В основном нас будут интересовать те вещества, из которых построены все живые существа — от простейших до позвоночных млекопитающих. Тела всех животных, растений и наипростейших существ — бактерий — построены из органических веществ. Чем отличаются эти вещества от неорганических? Они отличаются прежде всего тем, что в основе всех этих веществ, входящих в состав тела животных и растений, лежит элемент углерод. В этом очень легко убедиться — стоит только материалы растительного или животного происхождения подвергнуть сильному нагреванию, которое вызовет их разложение: при отсутствии воздуха они будут обугливаться. Возьмем ли мы дерево, бумагу, шерсть, кожу, жир, крахмал, мясо — все это будет обугливаться при нагревании до высоких температур, свидетельствуя, что в остове этих материалов лежит углерод.
Но если мы возьмем неорганические материалы — металлы, стекло, любой камень, — то сколько бы мы их ни нагревали, обугливаться они не будут. Таким образом, в основе того материала, из которого построена живая плоть, в основе органических веществ лежит элемент углерод. Поэтому для того, чтобы понять происхождение жизни, нам нужно проследить историю этого элемента. Нужно сказать, что углерод присутствует не только у нас на Земле и даже не только на нашем Солнце. При помощи особого прибора, разлагающего свет, так называемого спектроскопа, мы можем обнаружить присутствие этого элемента на любой звезде.
Таким образом, можно при помощи спектроскопа анализировать состав звезд почти так же, как если бы они были у нас в лаборатории. Но поверхность звезд имеет чрезвычайно высокую температуру, которая достигает у некоторых величины в 27 000°. Совершенно ясно, что при таких температурах не могут существовать не только никакие живые существа, но вообще какие-либо химические соединения. Вся материя при этих условиях находится в виде мельчайших раздробленных частичек, в виде беспорядочно носящихся атомов. Частички углерода тоже не могут при такой исключительно высокой температуре соединяться с другими какими-нибудь частичками. Они все разрознены и находятся в беспорядочном движении. В таком состоянии находится углерод в атмосфере наиболее горячих звезд. Но, изучая пути постепенного развития (эволюции) звезд, мы находим такие светила, температура поверхности которых равна 12 000°.
На таких звездах мы уже можем обнаружить первые химические соединения. В частности, здесь присутствуют соединения углерода с водородом — с тем элементом, который входит в состав воды. Наше Солнце является звездой, температура поверхности которой равна в среднем 6000°, то есть оно по сравнению с наиболее горячими звездами является уже Несколько остывшим светилом. В атмосфере нашего Солнца мы можем установить присутствие целого ряда соединений углерода. Углерод уже начинает вступать в соединение с другими элементами: с водородом, азотом, а кроме того, в атмосфере Солнца мы обнаруживаем и такого рода соединения, где отдельные атомы углерода начинают соединяться между собой.
Наша Земля возникла когда-то из той материи, из которой состоит и атмосфера нашего Солнца. Примерно три, а может быть, даже пять миллиардов лет назад от поверхности Солнца стали отрываться газовые сгустки, из которых в дальнейшем сформировались планеты нашей солнечной системы.
Тот сгусток, из которого образовалась наша планета, Земля, был сравнительно мелким образованием в мире звезд. По вычислениям американского астронома Ресселя, остывание этого газового сгустка происходило сравнительно быстро (конечно, на астрономический масштаб) — в течение каких-нибудь десятков «тысячелетий. Что при этом происходило с тем углеродом, который ранее находился в атмосфере Солнца и затем попал в газовый сгусток, из которого образовалась наша Земля?
Уже на Солнце при температуре в 6000° мельчайшие газовые частички — атомы углерода — стали соединяться между собой, образуя частички более крупные, так называемые молекулы. Эта способность углерода соединяться в более крупные частички даже при очень высоких температурах является чрезвычайно существенной его особенностью. Именно благодаря этой способности углерод является самым тугоплавким веществом, которое мы только знаем. В присутствии кислорода, а следовательно, и воздуха углерод окисляется, горит, но если мы будем нагревать его в отсутствии воздуха, то мы можем поднять его температуру до очень большой высоты, до нескольких тысяч градусов, и углерод при этом не будет плавиться.
При остывании того газового сгустка, из которого формировалась Земля, углерод первым должен был сгуститься и из состояния газа перейти в жидкое, а потом в твердое состояние. В таком виде он должен был опуститься к центру тяжести газового сгустка, войти в состав начального, первичного ядра формирующейся Земли. Точно так же туда должны были вскоре войти и некоторые наиболее тугоплавкие элементы — металлы, в частности железо, которым так изобилует атмосфера нашего Солнца. Углерод и другие тугоплавкие вещества сгустились первыми и вошли в состав центрального ядра нашей планеты.
В дальнейшем это ядро стало одеваться оболочкой, на его поверхности благодаря дальнейшему остыванию Земли стали образовываться другие оболочки из горных пород, которые одели это ядро, образовав так называемые геосферы. В конечном итоге в состоянии газа осталась только атмосфера, одевающая весь наш земной шар.
Хотя это центральное ядро недоступно непосредственному наблюдению человека, тем не менее наука при помощи ряда косвенных приемов установила, что оно лежит примерно на глубине 2500 километров и имеет радиус, равный примерно 3500 километров. Сверху оно одето рудными и каменными оболочками. Химический состав этого ядра в настоящее время так же при помощи косвенных приемов довольно точно определен. В основном, оно состоит из железа, никеля, кобальта, хрома и некоторых других элементов. В частности, в нем находится и значительное количество интересующего нас элемента — углерода.
Но в то время, когда формировалась наша планета, эта оболочка была еще не такой мощной. Она сравнительно легко разрывалась, и через эти трещины и разрывы вещества центрального ядра изливались и извергались на земную поверхность. Здесь они приходили в соприкосновение с тогдашней земной атмосферой. Атмосфера Земли того времени существенно отличалась от той, которую мы наблюдаем сейчас. Сейчас наша атмосфера состоит в основном из газообразного кислорода и азота. Тогда же ни свободного кислорода, ни свободного азота в нашей атмосфере быть не могло. В основном она состояла на перегретого водяного пара, вода современных океанов и морей еще входила в состав этой атмосферы, которая одевала наш земной шар.
С этими водяными парами и пришли во взаимодействие извергнутые на земную поверхность вещества, в частности та смесь углерода и железа, которая главным образом и составляет ядро нашей Земли. Нужно сказать, что углерод, находясь в смеси с раскаленным расплавленным металлом, образует соединение, которое в химии носит название «карбид». Образцом карбида является чугун, который как раз представляет соединение углерода и железа. Карбид — соединение углерода с железом, — извергнутый на земную поверхность, пришел во взаимодействие с перегретым водяным паром тогдашней земной атмосферы.
Что при этом случилось? Еще наш великий химик Дмитрий Иванович Менделеев показал, что при взаимодействии карбида-железа с водяным паром происходит образование углеводородов — соединений, состоящих из углерода и водорода. Это то же соединение, о котором я упоминал, когда говорил о первичных соединениях углерода в атмосфере звезд. Подобные соединения углерода и водорода должны были возникнуть и на поверхности нашей Земли. Образование углеводородов в начальный период существования нашей планеты сейчас может считаться вполне доказанным благодаря обнаружению их в атмосфере больших планет — Юпитера и Сатурна.
Изучение атмосферы этих планет является делом очень сложным, очень трудным, и долгое время мы не имели никаких представлений о составе атмосферы больших планет. Но лет десять назад этот вопрос удалось решить, и оказалось, что атмосфера Юпитера и Сатурна содержит значительную часть углеводородов. Они образовались в атмосфере Юпитера и Сатурна так же, как я это описал сейчас в отношении Земли, но на больших планетах вследствие значительной удаленности от Солнца царит очень низкая температура. Так, например, температура поверхности Юпитера равна −135°. При такой температуре не могут происходить никакие химические реакции, и поэтому возникшие здесь углеводороды остались в атмосфере Юпитера и Сатурна и сохранились до наших дней.
У нас на Земле дело пошло несколько иначе вследствие того, что Земля значительно ближе к Солнцу и температура на ее поверхности выше, чем на Юпитере или на Сатурне. Поэтому у нас углеводороды, возникнув на земной поверхности, стали подвергаться дальнейшим химическим изменениям и превращениям. В первую очередь они вошли в соединение с тем водяным паром, который находится в атмосфере Земли. При таком взаимодействии получились соединения — химические вещества, в состав частиц (молекул) которых входили углерод и водород и заимствованный из воды кислород. Свободного кислорода, как я сказал, тогда в атмосфере Земли еще не было. И вот при взаимодействии с водой получились соединения, которые в химии носят название третичных соединений, потому что они состоят из трех, элементов: углерода, водорода и кислорода.
К этим элементам присоединился еще четвертый элемент — азот, который тогда находился в атмосфере Земли в виде аммиака (соединение азота и водорода), точно так же, как он сейчас находится в атмосфере больших планет. Эти соединения, составленные из углерода, водорода, кислорода и азота, представляют собой простейшие органические вещества. В основном они были подобны некоторым из тех веществ, которые и сейчас входят в состав всех животных и растений.
Когда Земля остыла настолько, что явилась возможность для образования жидкой воды, на поверхность нашего земного шара из атмосферы хлынули ливни, которые затопили эту поверхность и образовали первородный сильно нагретый океан. В водах этого океана растворились те соединения углерода, водорода, кислорода и азота, которые, как я сказал, являлись простейшими органическими веществами.
Что же при этом произошло? На основании работ в наших лабораториях мы можем дать на этот вопрос определенный ответ. При этом простейшие органические вещества, находящиеся в водном растворе, усложнялись: их отдельные частички соединялись между собой и образовывали более сложные соединения. Для пояснения этого приведу такой пример: если мы возьмем водный раствор формалина, добавим туда немного извести или мела и оставим такой раствор стоять, то через некоторое время, как это доказал наш знаменитый химик Бутлеров, в этом растворе из формалина образуется сахар. Получается так, что шесть частичек формалина соединяются между собой и образуют одну крупную частицу — сахар.
Другой пример. Старейший член нашей Академии наук Алексей Николаевич Бах в свое время оставлял стоять раствор формалина вместе с раствором цианистого калия. Через некоторое время в этом растворе образуются белковоподобные вещества — не те самые белки, которые можно сейчас выделить из растений или животных, но подобные им вещества. В частности, если эти вещества выделить и очистить, то на них можно разводить гнилостные бактерии, которые обычно могут питаться только белковыми веществами; полученные Бахом вещества заменяли белки при питании бактерий.
Таких примеров можно привести сотни. Они показывают, что и в водах первородного океана находящиеся там сравнительно простые органические вещества должны были постепенно превращаться в более сложные, более громоздкие молекулы. Именно таким путем в первородной водяной оболочке Земли должны были образовываться все те органические вещества, из которых построены тела животных и растений. Однако это был лишь тот строительный материал, то вещество, из которого построены живые существа, но это еще не были сами живые существа. Это был тот камень и цемент, из которого можно построить здание. Но это не было еще само здание, а только его материал. Для того чтобы стать живым существом, организмом, ему нехватало определенного строения, организации.
Посмотрим теперь, как же возникла эта свойственная живым существам организация. Первоначально органические вещества находились в водах тогдашних морей и океанов просто в виде растворов. Их частицы были рассеяны, равномерно распределены в растворителе, полностью слиты с окружающей средой. Но сравнительно недавно удалось показать, что при смешивании водных растворов сложных органических веществ, например белков, эти последние могут выделяться в виде мелких, видимых под микроскопом капелек, так называемых коацерватов.
Мы можем получить коацерваты искусственным путем. Если мы, например, смешаем растворы яичного белка или желатина с гуммиарабиком, у нас растворы замутятся, и из них выделятся капельки коацерватов. Изучая эти капельки, мы увидим, что внутри них частицы органического вещества располагаются уже не беспорядочно, не как-нибудь, а определенным образом по отношению друг к другу. Следовательно, здесь уже появляются зачатки некоторого строения, организации. Конечно, эта организация еще очень простая и неустойчивая.