Анна Малкова - Моя профессия – репетитор стр 6.

Шрифт
Фон

Так почему же дроби оказались сложнее интегралов? Ведь для человека, который освоил нормально весь курс школьной математики, последовательность сложных тем должна быть совсем другой. Принципиально другой. И то, что мы наблюдаем на эксперименте, – нуждается в нетривиальном объяснении.

В школьной математике (на мой субъективный репетиторский взгляд), самое сложное – это ее кошмарная занудность. Пятикласснику – решить двадцать «примеров» на перемножение трехзначных чисел. И какие там «школьные годы чудесные…» – скорей бы все это кончилось! Школьная математика – марафон на выживание: у кого к первому курсу сохранится способность логически мыслить или интуитивно чувствовать решения, тому уже многое в жизни нипочем. А трудные темы – те, на которых больше всего народу ломается. Кто-то скис на теме «дроби» – и для него будут трудными дроби. Кто-то – сломался на устном счете, в первом или втором классе. А кому-то повезло больше, он на тригонометрии ушел в отключку – и поэтому тригонометрия лидирует по непонятности. Остается предположить, что до математического анализа, до производных и интегралов мозги доживают только у единиц.

Я чаще всего замечал два рубежа возникновение нелюбви и непонимания.

Первый – седьмой-восьмой классы, когда на ученика обрушиваются:

а) алгебра с ее формализмом тождественных преобразований никому не нужных уродливых буквенных выражений и

б) геометрия в принятом у нас аксиоматическом изложении, логику которого могут постичь лишь очень одаренные дети.

В результате школьники, как роботы, решают алгебраические примеры и зубрят наизусть доказательства геометрических теорем, то есть занимаются бессмысленной работой, вызывающей только раздражение.

Второй рубеж – десятый класс, когда резко усложняется алгебра и начинается (снова с этих проклятых аксиом!) стереометрия. То и дело приходилось слышать: «В девятом классе я еще что-то понимал(а), но сейчас…» Зачастую катализатором становится приход новой учительницы, которая начинает игру по своим правилам, и ребенок на какой-то момент выключается. А включиться обратно уже не удается.

Психологические особенности? Мне лично труднее всего работать с людьми неэмоциональными. У которых в запасе одна-две ноты, а лицо ничего не выражает. Таких, увы, много. И виню я в этом, среди прочего, нашу дебилизующую школьную программу по математике. Анна, как я ее ненавижу, Вы бы знали…

Игорь Вячеславович Яковлев, репетитор по математике и физике.

«У меня не получается. У меня нет способностей к математике. Я гуманитарий», – эти оправдания каждый репетитор слышит неоднократно. Как и слова родителей о нежелании учиться и переходном возрасте. Но все это – поверхность, внешние симптомы. А что в глубине, из чего вырастает такая безнадежность, с чем все-таки репетитору приходится работать? Ну что же, попробуем разложить по пунктам.

Пункт первый – недостаток элементарных математических навыков. Большинство учеников, приходящих ко мне в одиннадцатом классе, умножают сто на двадцать восемь – в столбик. Им не объяснили, что можно сделать по-другому. А уж деление на сто вызывает почти непреодолимые сложности.

Редкий ученик, увидев квадратное уравнение

30 х² + 30 х – 180 = 0,

догадается поделить обе части на 30. Так и будут считать дискриминант и корни, и скажут: дискриминант слишком большой, не вычисляется.

Не страшно, если ученик не может устно умножить 59 на 3. И не страшно даже, что он сделает ошибку при вычислении в столбик. Хуже, если, вычислив в столбик и получив в ответе четное число, он не замечает своей ошибки.

О, столбик! Столбик этот (как догма, как единственный способ вычисления) – отдельная песня, одна из худших в школьной математике. Если ваш ученик отвернулся, скукожился, закрылся от вас локтем и что-то долго делает в уголке листа, мелким почерком, многократно зачеркивая, – будьте уверены, он считает в столбик. При этом у него предельно серьезное выражение лица.

И ведь все это – и неумение чувствовать числа, и манера поведения – откуда-то из младшей и средней школы тянется.

И поэтому я часто спрашиваю: «А как это сделать проще?» Как обойтись без столбика и посчитать быстрее? Например, возвести 31 в квадрат, пользуясь формулой сокращенного умножения. Должна же быть от этих формул хоть какая-то польза.

Второе, с чем каждый репетитор-математик неминуемо сталкивается – ученик не понимает сути математических действий.

Действий-то этих не так много – сложение, умножение, вычитание, деление. А еще – степени. И функции. Но редкий ученик знает об этом, а потому придумывает свои, полуфантастические: «убрать икс», «избавиться от корня» (как от нечисти такой, которой в приличном уравнении не место), и, конечно, любимое – «отбросить логарифмы». Да, вот так и отбросить, как копыта.

Я называю это магическим отношением к математике. Для многих школьников математика – это иррациональное нечто, которое умом не понять, а можно только выучить ряд заклинаний и шаблонных действий. Да, ученик пробовал понять. Но не получилось. И потому – он выработал более комфортные для себя стратегии. Он поверил в формулы, как молодой дикарь – в амулеты. Он впадает в панику, если листочек со спасительными «формулами» забыт или конфискован. «Неизвестно, откуда они появились, но без них нельзя». А мы еще удивляемся – откуда у людей с высшим образованием вера в гороскопы и приметы?

А когда число 2,3 выпускник упорно называет «две третьих»? 0,5 – «ноль пятых»? Когда пишет, что х = 121 = 11 и объясняет, что, мол, надо было корень извлечь, дык я и извлек? И мне приходится рассказывать, что знак равенства ставится только между равными величинами, и 11 никак не равно 121, вот представь, будешь ты получать зарплату в 11 тысяч рублей или в 121 тысячу, есть же разница?

А еще я люблю гамбургер. Так я называю многоэтажные дроби. Я прошу ученика (а работаю я с выпускниками) поделить три четверти на одну восьмую, и – вот оно, родное!

3

4

1

8

И тогда я радуюсь, рисую в тетради у ученика Биг Мак (из Макдональдса, с котлетой и соусом), и рассказываю, что дробная черта и вот такой : в виде двоеточия, знак деления – это одно и то же! И он смотрит на меня такими глазами, что видно – никто ему раньше этого не говорил.

Третье явление я назову «методикой размножения ошибок». Я подозреваю, что это именно методика. То есть ей в школе обучают специально. Например, учат сокращать дроби – и показывают, что числитель и знаменатель надо зачеркнуть и написать рядом другие цифры. А потом и другие зачеркнуть и написать третьи, совсем малюсенькие. Цель данной методики – не иначе как экономия бумаги, а корнями, полагаю, уходит она во времена военного коммунизма, земских школ, а то и берестяных грамот.

Для меня загадка – кто все-таки учит ребят исправлять, то есть карябать одну цифру поверх другой? Ведь понятно же, что разобрать будет очень трудно. Но нет – бумагу надо экономить.

А еще такая белая китайская субстанция под названием «штрих». Сделав ошибку, ученик замазывает ее пастой из тюбика, ждет, пока высохнет, а затем пишет сверху – красота!

При этом он уже подзабыл, что там было правильно, а что – нет, да и не разобраться теперь, да и ладно, все равно я гуманитарий и мне математика не дается!

И поэтому я на первом же занятии ученикам говорю: «У нас с тобой будет такое правило – ничего не исправляем, одно поверх другого не пишем, потому что неразборчиво получается. Лучше зачеркни всю строчку и аккуратно перепиши внизу. Бумаги у нас много». И вроде мелочь – а действует!

Четвертая причина проблем с математикой – непонятные слова и символы. Часто ученик не может «написать уравнение касательной к графику функции в точке с абсциссой 5», потому что не понимает, что такое абсцисса. А спросить – стесняется. И мне самой приходится спрашивать ребят, что такое функция, что значит – решить уравнение, где у дроби числитель, а где знаменатель. Я уж не говорю о вопросе «Что такое производная?» Редкий отличник даст на него ответ.

Непонимание происходит, как обычно, от незнания языка.

В математике множество условностей и сокращений. Первое, что нужно сделать, когда сталкиваемся с непониманием, – максимально развернуть рассматриваемый объект, разложить его на простейшие и расшифровать все сокращения.

Сергей Германович Кузнецов, учредитель Компании «Ваш репетитор»

Как, например, объяснить ученику, что 3+2х не равно 5х? Да так и объяснить. На простых примерах. На яблоках и грушах. На мышах и бегемотах.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3