Георгий Челпанов - Учебник логики стр 26.

Шрифт
Фон

Вопросы для повторения

Как делятся суждения по количеству и по качеству? На какие четыре класса делятся суждения и как они обозначаются? Как различаются суждения по отношению между подлежащим и сказуемым? Какова схема суждений категорических, условных, разделительных? Как делятся суждения по модальности и какое между ними различие? Каково отношение между ассерторическими и аподиктическими суждениями?

Глава IX

Отношение между подлежащим и сказуемым. Объёмы подлежащего и сказуемого

Отношение между подлежащим и сказуемым . Мы видели, что суждения бывают обще-утвердительные, обще-отрицательные, частно-утвердительные и частно-отрицательные. Выясним отношение между подлежащим и сказуемым во всех этих классах суждений.

Суждения A . Возьмём обще-утвердительное суждение «все рыбы суть позвоночные» (все S суть P). В этом суждении мы утверждаем, что всякая рыба входит в объём класса позвоночных, другими словами, что в класс вещей, который мы обозначаем при помощи сказуемого «позвоночные», входит целиком класс вещей, обозначаемых подлежащим. Но так как в классе позвоночных кроме рыб есть ещё и другие животные, то объём класса позвоночных будет больше класса рыб. Если понятие S содержится в объёме понятия P, то символически мы можем это представить при помощи круга S, который находится внутри круга P. Поэтому те обще-утвердительные суждения, в которых объём подлежащего меньше объёма сказуемого, можно символически изобразить, как это представлено на рис. 10.

Но если в обще-утвердительных суждениях подлежащее и сказуемое будут понятиями равнозначащими, то символ их будет иной. Возьмём пример: «все квадраты суть параллелограммы с равными сторонами и равными углами». В целом суждении S и P суть понятия равнозначащие и, как таковые, совпадают друг с другом своими объёмами. Поэтому мы не можем круг поместить в середине P, как это мы сделали в предыдущем суждении, а должны представить отношение S к P в виде двух совпадающих кругов (рис. 11).

Суждения E . Возьмём обще-отрицательное суждение «ни одно насекомое не есть позвоночное». В этом суждении мы отрицаем всякое совпадение между подлежащим и сказуемым; один класс находится вне другого класса. Мы в мышлении совершенно отделяем класс подлежащего от класса сказуемого. Символически отношение S к P в таких суждениях может быть обозначено посредством двух отдельно стоящих и не связанных друг с другом кругов (рис. 12).

Суждения I . Возьмём частно-утвердительное суждение «некоторые книги полезны». В этом суждении часть класса S входит в объём класса P, т.е. совпадает с классом P. Если какая-нибудь часть S совпадает с P, то круги S и P должны иметь общую часть, т.е. должны пересекаться. Символически отношение между подлежащим и сказуемым в частно-утвердительных суждениях можно изобразить так, как это сделано на рис. 13.

Та часть S, о которой утверждается в P, на рисунке заштрихована.

Некоторые частно-утвердительные суждения можно символизировать иначе. Возьмём пример: «некоторые животные суть позвоночные». Если мы станем рассматривать объём понятий «животные» и «позвоночные», то увидим, что последнее понятие подчинено первому, т.е. в объём понятия «животные» входит как часть понятие «позвоночные». Поэтому символ такого частно-утвердительного суждения будет таков, как он изображён на рис. 14.

Он показывает, что мы из S (животные) выделяем часть, которая и есть P (позвоночные). Та часть S, о которой идёт речь, на рисунке заштрихована.

Суждения O . Возьмём частно-отрицательное суждение «некоторые книги не суть полезны». Это суждение означает, что некоторые книги не входят в класс полезных вещей, другими словами, некоторая часть S не входит в объём P. Если мы представим подлежащее и сказуемое в суждении O в виде кругов (рис. 15), то эти круги должны иметь и общие и не общие части, т.е. они должны пересекаться.

Заштрихованная часть круга означает, что об этой части субъекта идёт речь в этом суждении, а именно, что она не входит в объём понятия P, что она находится вне понятия P.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке