Я преодолел последнюю складку искривленного пространства и выпал в реальное – как блоха из одежды хариджана, если ту потрясти. Глядя на туманные звезды Тверди, я вспомнил старый-престарый ответ канторов: математика – это особый язык, языки же рождаются в мозгу. Но мозг эволюционировал пятнадцать миллиардов лет от мозга человека-обезьяны, а если брать глубже – от мозга еще более простых млекопитающих, от нервных клеток существ, плававших в теплых соленых водах нашего далекого прошлого. Если взять еще глубже, мы дойдем до бактериальных спор, принесших жизнь на Старую Землю. А откуда взялись они? Их создала Эльдрия? Кто тогда создал Эльдрию? Что такое жизнь? Жизнь – это информация и разум, заключенные внутри ДНК; это взрывное воспроизводство белковых молекул; это углерод, кислород, водород и азот, зарождающиеся в звездных ядрах. Сами же звезды рождает вселенная, эта гигантская фабрика по производству звезд; вселенная породила Беллатрикс, Сириус и голубые гиганты скопления Эде; из таких звезд, как Антарес и Канопус, собственно, и произошла жизнь. Каждый атом наших тел создавался в далеком небесном огне. Мы – дети звезд, мы – создания вселенной. И если наш рожденный звездами мозг воспринимает как должное "линию" и прочие элементы языка, надо ли удивляться тому, что "линия" является естественным смысловым понятием нашей вселенной? И что удивительного в том, что логика вселенной является также и нашей логикой? Канторы любят говорить, что Бог у нас – математик, и верят, что мы, создавая особый язык математики, учимся языку вселенной. Мы все, пилоты и математики, произносим слова этого языка, пусть в самой инфантильной, примитивной форме. Раз или два, размышляя, как чудесно подходит математика к контурам пространства-времени и к изгибам мультиплекса, я чувствовал, что вселенная говорит со мной ее языком – надо только уметь слушать. Но как этому научиться? Как заставить чистые ноты математики звучать более бегло? Что такое вдохновение?
Я продолжал свой путь в корабле, похожем на темный затхлый гроб, гораздо темнее камеры Хранителя Времени. Как семя, пробивающееся из земли на свет дня, рвался я из пут старого мышления, связывающих мое вдохновение. Как мне хотелось доказать Великую Теорему! Но это желание не было свободно от страха. Я снова и снова задумывался над природой собственного разума. Откуда у меня умение скраировать и мнемонировать? И кто знает, какие еще способности я могу обрести? Если я все-таки докажу свою теорему, будет ли доказательство действительно моим – или оно будет принадлежать агатангийскому информационному вирусу? Осмелюсь ли я взрастить семя вдохновения внутри себя, взлелеять его и вкусить его горько-сладкий плод?
Я шел по маршрутам Тверди через серию сгущений. Однажды, выйдя из мультиплекса в месте темном и похожем на межгалактическую пустоту, я чуть не запаниковал, но тут же обнаружил, что на самом-то деле нахожусь в центре сгущения! Фокусы были спрессованы, как икринки в брюхе у рыбы. Я не понимал, как это возможно. Только звезды (или разум) способны деформировать космос так, чтобы создалось сгущение. Быстро открыв окно, я прыгнул в мультиплекс, ушел в сон-время и стал думать об этом странном сгущении. Если мозг Тверди содержит такие чудеса, как беззвездное сгущение, какие чудеса могут заключаться в моем мозгу? Может быть, мне опять попытаться – попытаться как следует, до жжения в глазах и бурного прилива крови к мозгу – попытаться в тысячный раз доказать Гипотезу Континуума?
Как только эта мысль окрепла во мне, цифровой шторм усилился. Идеопласты строились и текли, бушуя перед моим внутренним взором. От волнения я почти утратил контроль над собой. В тысячный раз я обдумывал обманчиво простые условия Гипотезы, говорящие, что между любой парой фокусов дискретных множеств Лави существует прямой маршрут. Я разобрал это утверждение на части и исследовал каждую из них. Что такое множество Лави? Что такое фокус? Уверен ли я, что понимаю разницу между множеством Лави и дискретным множеством Лави? Как показать, что маршрут прямой, и, что еще важнее, как его составить? Сначала я пошел по проторенной дороге и вспомнил все мои старые попытки найти решение. Часто я обнаруживал, что мысль моя движется по кругу. Мелкость собственного мышления обескуражила меня. Как доказать то? Как доказать это? Как порвать ржавые цепи привычных, лишенных вдохновения мыслей?
Я попробовал представить задачу в иной форме, надеясь, что свежий взгляд на нее поможет мне увидеть очевидное. Мне удалось найти эквивалентную формулировку, но она оказалась еще более заумной, чем первоначальная. Я раскладывал Гипотезу на составные элементы, перестраивая их так и этак – все напрасно. Я представлял части Гипотезы в виде картин, чтобы "увидеть" связи, которые мог проглядеть. Я обобщал Гипотезу, включая в нее все множества Лави, и играл с маршрутами специфических множеств Лави, хорошо изученных. Я пытался построить доказательство от противного и анатомировал родственные теоремы (Теорема Бумеранга Бардо входит в их число, хотя доказать ее гораздо проще). Я шел по длинным темным коридорам рассуждений, спускаясь на тысячи ступеней вниз; я ругался, тер глаза и виски – и наконец, когда мои волосы и борода слиплись от пота и я почти утратил надежду, в голову мне полезли какие-то дикие догадки.
Не знаю, сколько времени я пытался доказать Гипотезу. Дни, секунды, годы – разве время имеет какое-то значение? Да, в определенном смысле. Соли в любое время мог приблизиться к своему моменту вдохновения. Гонки продолжались, безмерные моменты складывались в нескончаемые дни, и я начинал думать, что Гипотеза недоказуема. Довольно долго я пытался показать, что она недоказуема, хотя по-настоящему в это не верил. Интуиция – а математически мыслящий человек никогда не должен пренебрегать интуицией, – какой-то внутренний голос шептал мне, что Гипотеза на самом деле доказуема и более того – что это доказательство покажется мне до смешного очевидным, когда я найду его. Если найду. Если его вообще можно найти. Если… Если маршрут между парой фокусов дискретных множеств Лави существует, маршрутов должно быть бесконечно много; если заполнить п-мерный куб конечным числом достаточно малых замкнутых множеств, некоторые точки, безусловно, будут относиться по меньшей мере к п+1 этих множеств; если размешать миску с кровяным чаем в тысячный раз, по меньшей мере одна точка – одна частица крови – останется на прежнем месте, не затронутая размешиванием; если/то. Если я исследую идеопласты правила Тихо, Черепичной Теоремы и Теоремы Фокусов, если я раздроблю их сверкающие кристаллические структуры на отдельные ступени доказательства, вместо того чтобы цепляться за целое, то, может быть, и пойму, что вдохновляло их создателей. Если я получше вникну в их доказательство, то смогу лучше использовать эти теоремы для доказательства Гипотезы.
И если пилот слишком долго задерживается в сон-времени, то он должен выйти из ментального пространства и поспать. Я внезапно устал от игры идеопластов, захлестывающих мозг, и мне страшно стало думать о чем-либо, связанном с математикой. Я кусал губы, ругался, отчаивался и наконец уснул. Закрыв глаза и ум перед цифровым штормом, я плавал в кабине, как труп. Я спал долго, а когда наконец проснулся, веки у меня склеились и во рту стоял вкус крови – наверное, я прикусил язык во время сна. Мысли застыли, как черный лед. Я был пуст, как покинутая снежная хижина на отмели глубокого зимнего моря. Но холод не был абсолютным. Внутри что-то теплилось, словно я, выбравшись из-под перевернутых карт, влил в себя миску горячего чая. Во мне слабо светилась какая-то мысль – я не знал, откуда она взялась. Без видимой причины я вспомнил одну второстепенную теорему – Маршрутную Теорему Джустерини. Огонек стал ярче, как будто я раздул тлеющие угли. Я с волнением подумал о том, как изящно Олаф Джустерини применил свертку омега-функции, чтобы доказать свою не получившую признания теорему. Как красиво!