
Рис. 4.38.Работа транзистора в режиме переключения: схема (а) и формы импульса входного напряжения (б), тока базы (в), напряжения эмиттер - база (г), тока коллектора (д), напряжения коллектор - эмиттер (е)
На транзистор, находящийся первоначально в состоянии отсечки, подается управляющий прямоугольный импульс большой амплитуды, который вызывает переход в состояние насыщения перехода эмиттер - база. Ток коллектора нарастает с задержкой, зависящей не только от параметров транзистора, но и от степени управления (глубины насыщения). Крутизна выходного импульса будет тем большей, чем больше возбуждение, т. е. чем больше токи базы. Однако при этом происходит расширение импульса, поскольку выходной импульс еще "длится", несмотря на исчезновение входного импульса. Процесс обусловлен наличием в базе в состоянии насыщения высокой концентрации неосновных носителей, тогда как изменение смещения перехода коллектор - база при переключении из состояния насыщения в активную область требует небольшой концентрации этих носителей.
На это требуется некоторое время, зависящее, в частности, от глубины насыщения и длительности входного сигнала, а также от свойств транзисторов. В справочниках по транзисторам приводятся некоторые данные, определяющие время включения и выключения.
Время включения является суммой времени задержки tз и времени нарастания tн, а время выключения - суммой времени накопления (рассасывания) tр и времени среза tс. Время включения и выключения связано и с другими параметрами транзистора. Например, чем частота fт больше, тем эти времена меньше. Рост емкости С22б увеличивает время включения и выключении. Работа при большом токе коллектора увеличивает время нарастания и спада, но сокращает время накопления. Возрастание тока базы вызывает уменьшение времени включения, но увеличение времени выключения. Работа при малом токе базы, обеспечивающем работу вне области насыщения, связана также с малым коэффициентом передачи транзистора по току.
С точки зрения управления транзистора различают управление током, напряжением и зарядное управление.
Что такое управление транзистора током, напряжением и зарядом?
Управлением транзистора по току называется управление входной цепью от источника с большим внутренним сопротивлением по сравнению с входным сопротивлением транзистора, а управлением по напряжению - от источника с малым внутренним сопротивлением. При управлении по току и напряжению скачкообразное изменение тока базы не вызывает мгновенного изменения тока коллекторе.
Наибольшую крутизну выходного колебания, т. е. наименьшее гремя фронта, можно получить при управлении зарядом (рис. 4.39).
Оно состоит во введении инжекции в базу требуемого заряда сразу, целиком, а не на принципе постепенного накопления этого заряда, как, например, это имеет место в случае управления при постоянном токе базы. Это осуществляется, в частности, путем использования цепи с ускоряющим конденсатором (иначе - компенсационным); импульс, связанный с наличием емкости во входной цепи, вводит в базовую область такой заряд в начальный момент, что ток коллектора очень быстро достигает своего установившегося значения.

Рис. 4.39.Управление транзистора зарядом: схема (а) и формы изменения управляющего напряжения (б), тока базы (в) и тока коллектора (г)
Как обозначаются транзисторы?
Существуют различные обозначения, которые зависят от страны и изготовителя. В иностранкой литературе чаще всего встречаются буквенно-цифровые обозначения с двумя либо тремя буквами в начале. Наиболее распространена система обозначений, в которой первая буква обозначает тип полупроводника: А - германий; В - кремний. Вторая буква обозначает тип элемента: С - транзистор маломощный низкочастотный; D - транзистор мощный низкочастотный; F - транзистор маломощный высокочастотный; L - транзистор мощный высокочастотный; S - транзистор для переключающих схем; U - транзистор мощный для переключающих схем. Определение "маломощный" обычно соответствует мощности Pмах <= 0,3 Вт; определение "низкочастотный" обозначает, что для данного транзистора граничная частота fт <= 3 МГц (или fт <= 2,5 МГц). Третья буква обозначает применение транзистора, указанное изготовителем.
В СССР используется буквенно-цифровая маркировка транзистора. В зависимости от назначения и используемого при изготовлении транзисторов материала первая буква или цифра обозначает тип полупроводника: 1 или Г - германий; 2 или К - кремний; 3 или А - арсенид галлия. Буква соответствует применению в аппаратуре широкого, а цифра - специального назначения.
Второй элемент классификация (маркировки) обозначает тип транзистора: T - биполярный; П - полевой.
Третий элемент назначения определяет назначение транзистора по частотным и мощностным свойствам (табл. 4.1).
Четвертый и пятый элементы - номер разработки транзистора, обозначается цифрами от 01 до 99.
Шестой элемент обозначения - буквенной от А до Я. Показывает разделение транзисторов данного типа по классификационным параметрам. Например, транзистор КТ605А - кремниевый, биполярный, средней мощности, высокочастотный. номер разработки 0,5, группа А с классификационным параметром h21э от 10 до 40. - Прим. ред.
Таблица 4.1
Транзистор…Третий элемент маркировки транзистора
____________________________________________
- Малой мощности (до 0,3 Вт) с граничной частотой передачи тока:
• низкие частоты до 3 МГц… 1
• средние частоты 3-30 МГц… 2
• высокие и сверхвысокие частоты (более 30 МГц)… 3
- Средней мощности (0,3–1,5 Вт) с граничной частотой передачи тока:
• низкие частоты до 3 МГц… 4
• средние частоты 3-30 МГц… 5
• высокие и сверхвысокие частоты (более 30 МГц)… 6
- Большой мощности (более 1,5 Вт) с граничной частотой передачи тока:
• низкие частоты до 3 МГц… 7
• средние частоты 3-30 МГц… 8
• высокие и сверхвысокие частоты (более 30 МГц)… 9
В справочниках помимо обозначения транзистора часто указываются тип корпуса и эскиз расположения электродов. Корпуса защищают структуру транзистора от механических повреждений, загрязнений, влияния влаги, упрощают отвод тепла, облегчают монтаж транзистора. Применяются корпуса металлические, стеклянные, керамические и из искусственных материалов. Расположение электродов зависит от типа используемого корпуса.
Что такое вакуумный триод?
Это вакуумный прибор (рис. 4.40) стремя электродами: катодом, сеткой и анодом, обладающий свойством усиления электрического сигнала. Электроды расположены в стеклянном или металлическом баллоне с вакуумом внутри.