Это был акт широты и терпимости. Тем более удивительный акт, что Резерфорд никогда не давал ходу исследованиям, если они казались ему недостаточно достоверными. Да, конечно, он почуял за постулатами Бора некую высшую достоверность, которой еще предстояло раскрыться. По собственному опыту он знал, что без широты и терпимости науке не жить!
4
В час той же первой публичной дискуссии о квантовом истолковании атома, когда Рэлей произнес крылатую фразу о шестидесятилетних, слово попросил только–только ставший шестидесятилетним Лоренц. Он полюбопытствовал: "Как объясняется атом Бора с точки зрения механики?" Многие сочли этот вопрос язвительным, но язвительность не вязалась с образом Лоренца.
Бор понял: с тем же нелукавящим прямодушием, что и Резерфорд, Лоренц спрашивал о наиглавнейшем - о логической связи между квантовыми постулатами и классической механикой. Нуждались в механической расшифровке две вещи: существование в атоме лишь прерывистой последовательности разрешенных орбит и скачки электронов с орбиты на орбиту. Что мог ответить Бор?
Квантовые постулаты не выводились из классики. Иначе они не были бы, во–первых, постулатами, во–вторых, квантовыми.
Хотя паутина дозволенных орбит и скачки с испусканием квантов равно чужды классической картине природы, для нашего воображения есть ощутимое различие между этими образами. Первый, в общем–то, легко представить, а второй совершенно непредставим. Неважно, что орбиты незримы: мысленно мы их легко прочерчиваем одну за другой в пространстве атома - так же, как пути планет в пространстве Солнечной системы. Это застывающий в неподвижности геометрический образ. А скачок - образ движения: он требует от нас рисовать себе процесс перемещения электрона между орбитами. Казалось бы, и это так просто! Но на нашу беду, скачки в теории атома - квантовые. И это превращает простое в невозможное. Наше воображение пасует.
У квантовых скачков есть начало и конец, а середина - самый процесс перескока - проваливается для обычного механического описания. Оно неосуществимо: делить квантовый скачок на более мелкие, а те на еще более мелкие, чтобы проследить течение этого события, запрещается сутью дела. Это ведь было бы попыткой дробления кванта на части - на все меньшие квантики излучения. Иными словами, это стало бы разрушением самой идеи неделимых квантов энергии. И атом, где овеществлялось бы такое дробление, излучал бы свет непрерывно. Его спектр выглядел бы сплошным, а не линейчатым.
Впервые физика столкнулась с физическими событиями, у которых нет механической истории. И вместе с классической механикой наше воображение отказывается служить нашей мысли. Недаром же много лет спустя после рождения теории Бора Лев Ландау сказал, что квантовые идеи оказались еще более "дикими", чем идеи теории относительности.
Так что же мог ответить Нильс Бор в 1913 году на вопрос Лоренца? Логической связи с классикой не наблюдалось. С полной убежденностью Бор сказал только одно:
"…Так как без квантовой теории не обойтись, то какая–нибудь схема, включающая прерывности и скачки, все равно необходима!"
И на это уж нельзя было возразить.
А все–таки была точка пересечения, где сразу наметилась глубокая связь между классическими законами и квантовыми чертами в картине атома. Эта связь, названная Бором поначалу "соображениями сходства", стала потом содержанием его знаменитого принципа соответствия.
…У лестницы устойчивых уровней энергии в атоме было и сразу бросалось в глаза преинтереснейшее свойство: чем дальше от ядра, тем ниже делались ступеньки этой лестницы.
Человек, задравший голову у подножья ступенчатой мексиканской пирамиды, видит, как в вышине сходят на нет ее уступы. Но для него это - оптический обман по законам перспективы. На самом же деле все уступы одной высоты. А в атоме они действительно разные - убывание высоты ступенек по мере удаления к периферии атома не иллюзорное, но подлинное. Это показывают формулы и спектры.
Разница между соседними разрешенными уровнями энергии делается все менее заметной. Прерывистость в паутине орбит становится все менее ощутимой. Скачки с уровня на уровень - с орбиты на орбиту - оказываются все короче. В спектрах, отражающих эти скачки, частокол испускаемых линий все уплотняется. Линейчатый спектр начинает походить на сплошной, непрерывный, как если бы атом принимался излучать все световые частоты подряд.
Прерывность постепенно превращается в непрерывность.
Власть квантовых законов постепенно сменяется властью законов классических. Микромир переходит в макромир. Природа прекрасно демонстрирует свое физическое единство.
Как и следовало ожидать, природа нигде не водрузила пограничного столба с категорическим оповещением: "Досель - владения Галилея - Ньютона - Кеплера, а отсель - Планка - Эйнштейна - Бора". Непереходимого рубежа между атомным миром и миром зримым нет. Ожидать этого следовало ну хотя бы потому, что в противном случае мы с вами, размышляющие на досуге о законодательстве природы, не удостоились бы чести быть сложными конструкциями из атомов (и не сумели бы размышлять о них).
Ради одного философского удовлетворения Бору сто ило из своей теории извлечь "соображения сходства", или принцип соответствия. Но извлек он этот принцип - из формул и опыта - по причине иных, менее возвышенных побуждений.
Надо было еще многое объяснить в поведении атомов как излучателей квантов, не говоря уже об их химических повадках и многом другом. А то, что в движении электронов на атомной периферии, чем дальше от ядра, тем явственней проявлялись классические черты, обнадеживало. Напрашивалась мысль, что удастся раздобыть искомые квантовые формулы по сходству - по соответствию! - с уже известными классическими закономерностями.
Кажется, никогда еще не добывалось таким логически противозаконным путем теоретическое знание в физике, прославленной своей логической требовательностью. Почти неправдоподобно признание одного из гениев боровской школы - Вернера Гейзенберга:
"…Наши усилия были посвящены не столько выводу корректных математических соотношений, сколько угадыванию их по сходству с формулами классической теории".
И ведь угадывали!
Арнольд Зоммерфельд восхищенно говаривал о "волшебной палочке принципа соответствия": так много хороших- согласных с природой - ответов давала квантовая модель атома даже в своей первоначальной форме, далекой от совершенства. Даже когда она еще не умела разрешить сомнений Резерфорда, Брэгга, Рэлея, Лоренца и других. Стало быть, заключалось в ее основах (покуда не проявленных) что–то глубинно верное, не так ли? Знать бы, что именно?
Тот же Зоммерфельд писал в начале 20–х годов Эйнштейну:
"Все ладится, но глубокие основы остаются неясными".
Точно вторя ему, Макс Борн называл "совершенно таинственными глубокие причины, лежащие в основе" теории Бора.
Не сомневаясь в ее справедливости, сам Эйнштейн восклицал в своем обычном мягко ироническом стиле:
"Если бы я только знал, какие винтики использует при этом господь–бог!"
А многие физики как раз на то и надеялись в конце 10–х и начале 20–х годов, что он–то, Эйнштейн, и сумеет выведать у природы, какие винтики пустила она в ход, конструируя атомный излучатель квантов, да и вообще конструируя микромир. Отражая эту надежду на проницательность создателя квантовой теории света, снова Зоммерфельд писал Эйнштейну так:
"Вы раздумываете над фундаментальными проблемами световых квантов. А я, не чувствуя в себе нужных для этого сил, удовлетворяюсь прояснением деталей квантовых чудес в спектрах… Но для понимания их физической сути я ничего не могу придумать".
И еще так:
"Я могу помочь развитию лишь техники квантов. Вы должны построить их философию".
Однако не Эйнштейну суждено было ее построить. Напротив, ему суждено было стать ее пожизненным противником - неутомимым, изобретательным, стойким, но напрасным оппонентом. И это тем драматичней, что он стоял у колыбели "философии квантов". Больше того: он доверил этой колыбели дитя, которому предстояло расти и крепнуть.
Дитя было кентавром: в нем соединились свойства частиц и волн.
5
Идея существования микрокентавров - идея волн–частиц - не имела ни малейшего отношения к спасению планетарной модели атома от неустойчивости. Да, скачки по энергетической лестнице сопровождаются испусканием или поглощением квантов света. Но для теории атома было безразлично, что такое всякий квант в пространственном отношении - четко ли очерченная корпускула излучения или цепочка электромагнитных волн? И было это безразлично до такой степени, что сам Нильс Бор позволял себе отрицать реальность световых частиц Эйнштейна, а признавал только кванты Планка - порции, какими отмеривается в природе электромагнитная энергия излучения. И это понятно: ведь поначалу Бору лишь одно важно было - как отмеривается излучение. Кванты отмеривались излучающим атомом как разности между двумя уровнями энергии. Вот и все. А странности поведения световых квантов, покинувших атом, Бора тогда не волновали.
Происходило нечто нам уже знакомое и обычное для истории истинной науки: ради достижения успеха познание снова ограничивало свою задачу. И снова вспоминается платоновский Тимей:
"Если мы хотим заниматься астрономией, то нам незачем интересоваться небесными телами".
Но лишь до поры, до времени, не так ли? Разумеется. И в своей книге о Ньютоне Сергей Иванович Вавилов добавил это уточнение к мысли Платона, написав: