
Рис. 5.6.Схема Г-образных LC-фильтра (а) и RC-фильтра (б)
В то же время постоянная составляющая напряжения на нагрузочном резисторе не уменьшается, так как отсутствует сколько-нибудь значительное падение напряжения этой составляющей на очень малом активном сопротивлении дросселя. С учетом рекомендаций по выбору значений Сф и Lф, выражение для коэффициента сглаживания LC-фильтра можно записать в виде:
q = ωосн∙Lф∙Cф - 1 (5.10)
Оно позволяет рассчитать параметры этого фильтра по заданному значению коэффициента сглаживания:
Lф∙Cф = (q + 1)/ωосн (5.10, a)
В расчетах по формуле (5.10, а) одним из параметров (индуктивностью или емкостью) элементов фильтра задаются исходя из габаритов, массы и стоимости элементов.
В маломощных выпрямителях, у которых сопротивление нагрузочного резистора составляет несколько килоом, вместо дросселя Lф включают резистор Rф (рис. 5.6, б), что существенно уменьшает массу, габариты и стоимость фильтра. При выборе ХCф << Rф на резисторе Rф создается значительно большее падение напряжения от переменных составляющих выпрямленного тока, чем на резисторе Rн. Если выбрать значение Rф из соотношения Rн/(Rн + Rф) = 0,5…0,9, то падение постоянной составляющей напряжения на резисторе Rф будет минимальным. В итоге доля переменной составляющей в выпрямленном напряжении по отношению к постоянной составляющей на нагрузочном резисторе Rн значительно уменьшается. Коэффициент сглаживания для Г-образного RC-фильтра определяется из выражения:
q = (0,5…0,9)∙ωоснRфСф.
Следует отметить, что коэффициент сглаживания RC-фильтра меньше, чем у LC-фильтра.
5.3. ВНЕШНИЕ ХАРАКТЕРИСТИКИ ВЫПРЯМИТЕЛЕЙ
Внешней характеристикой выпрямителя называют зависимость напряжения на нагрузочном устройстве от тока в нем: Uн = f(Iн).
Наличие такой зависимости обусловлено тем, что в реальном выпрямителе сопротивления диодов и обмоток трансформаторов не равны нулю, а имеют конечные значения. На этих сопротивлениях от выпрямленного тока Iн создаётся падение напряжения, приводящее к уменьшению напряжения Uн.
В выпрямителе без фильтра напряжение Uн и нагрузочный ток связаны между собой соотношением:
Uн = Uн. х - (Rпр - Rтр)/Iн
где Uн. х - напряжение на нагрузочном устройстве при Iн = 0.
На рис. 5.7 изображена зависимость Uн = f(Iн) выпрямителя без фильтра (кривая 1). Как видно, кривая 1 нелинейная, что объясняется нелинейным характером вольт-амперной характеристики диода, т. е. зависимостью Rпр от тока.
Кривая 2 на рис. 5.7 соответствует выпрямителю с емкостным фильтром. При Iн = 0 кривая берет свое начало из точки на оси ординат, соответствующей напряжению U2m = √(2U2), так как в отсутствие тока Iн конденсатор Сф заряжается до амплитудного значения напряжения вторичной обмотки u2.
С ростом тока Iн кривая 2 спадает быстрее, чем кривая 1, что объясняется не только увеличением падения напряжения на вторичной обмотке трансформатора и прямом сопротивлении диода, но и уменьшением постоянной времени разряда τразр = RнСф, обусловливающим дополнительное снижение среднего значения выпрямленного напряжения Uн. Можно легко показать, что при дальнейшем уменьшении Rн кривая 2 будет асимптотически стремиться к кривой 1 и при Rн = 0 они придут волну точку на оси абсцисс.
Внешняя характеристика выпрямителя с Г-образным RC-фильтром (кривая 3) на рис. 5.7 имеет еще более крутой наклон, чем кривая 2. Это вызвано дополнительным падением напряжения на последовательно включенном резисторе Rф.

Рис. 5.7.Внешние характеристики выпрямителей
5.4. СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ
Стабилизатором напряжения называют устройство, автоматически обеспечивающее поддержание напряжения нагрузочного устройства с заданной степенью точности.
Напряжение нагрузочного устройства может сильно изменяться не только при изменении нагрузочного тока Iн, но и за счет воздействия ряда дестабилизирующих факторов. Одним из них является изменение напряжения промышленных сетей переменного тока.
В соответствии с ГОСТ это напряжение может отличаться от номинального значения в пределах от + 10 до -15 %. Другими дестабилизирующими факторами являются изменение температуры окружающей среды, колебание частоты тока и т. д. Применение стабилизаторов диктуется тем, что современная электронная аппаратура может нормально функционировать при нестабильности питающего напряжения 0…3 %, а для отдельных функциональных узлов электронных устройств нестабильность должна быть еще меньше. Так, для УПТ и некоторых измерительных электронных приборов нестабильность питающего напряжения не должна превышать 10%.
Стабилизаторы квалифицируют по ряду признаков:
• по роду стабилизируемой величины - стабилизаторы напряжения или тока;
• по способу стабилизации - параметрические и компенсационные стабилизаторы.
В настоящее время широкое применение получили компенсационные стабилизаторы, которые подразделяют на стабилизаторы непрерывного и импульсного регулирования. При параметрическом способе стабилизации используются некоторые приборы с нелинейной вольт-амперной характеристикой, имеющей пологий участок, где напряжение (ток) мало зависит от дестабилизирующих факторов. К таким приборам относятся стабилитроны, бареттеры, лампы накаливания и др.
При компенсационном способе стабилизации постоянство напряжения (тока) обеспечивается за счет автоматического регулирования выходного напряжения (тока) источника питания. Это достигается за счет введения отрицательной обратной связи между выходом и регулирующим элементом, который изменяет свое сопротивление так, что компенсирует возникшее отклонение выходной величины.
Основным параметром, характеризующим качество работы всех стабилизаторов, является коэффициент стабилизации. Как отмечалось, определяющими дестабилизирующими факторами, из-за которых изменяются выходные величины стабилизатора, являются входное напряжение стабилизатора Uвх и нагрузочный ток Iн.
Для стабилизатора напряжения коэффициент стабилизации по напряжению: