
Рис. 4.12.График зависимости ТКН стабилизации стабилитрона от напряжения стабилизации
Для уменьшения ТКН стабилизации выпускаются термокомпенсированные стабилитроны, в которых соединены последовательно стабилитрон и р-n-переход (диод), включенный в прямом направлении. С повышением температуры падение напряжения на р-n-переходе (включенном в прямом направлении) уменьшается, а на обратно смещенном р-n-переходе (стабилитроне) растет. Таким способом у термокомпенсированных стабилитронов, например КС211, удается получить малый (у КС211Б αст = 0,02 %/°С, а, для сравнения, у КС650А αст = 0,2 %/°С).
На рис. 4.13 изображена схема параметрического стабилизатора напряжения, применяемая на практике.

Рис. 4.13.Принципиальная схема параметрического стабилизатора напряжения
При увеличении входного напряжения возрастет сила тока I в обшей цепи и сила тока через стабилитрон Iст. Увеличится падение напряжения на балластном резисторе Rб. Напряжение на стабилитроне Uст и на нагрузке Rн останутся практически неизменными. Обратите внимание: в схеме на катод стабилитрона подается "+" источника питания, а на катод - "-" источника!
Для стабилизации напряжения разной полярности выпускаются симметричные стабилитроны, имеющие симметричную ВАХ.
Диоды, у которых для стабилизации напряжения используется прямая ветвь ВАХ, называют стабисторами. Стабисторы включаются в схему стабилизации напряжения как обычные диоды. В отличие от стабилитронов стабисторы имеют малое напряжение стабилизации (около 0,7 В).
Для расширения диапазона стабилизации используют последовательное соединение в одном корпусе нескольких стабисторов.
Параметры стабисторов аналогичны параметрам стабилитронов, а их максимальная сила тока и мощность те же, что и у выпрямительных диодов. Стабисторы имеют отрицательный ТКН стабилизации. Для использования в качестве стабистора предназначены кремниевые диоды Д219С, Д22 °C, Д223С. Внешний вид всех стабилитронов одинаковый.
Если у вас нет стабилитрона на нужное напряжение, в этом случае надо собрать цепочку последовательно соединенных стабилитронов так, чтобы при протекании через них рабочего тока выполнялось равенство:
Uст1 + Uст2 + … + Uстn = Uст,
где Uст - требуемое напряжение стабилизации.
Так как напряжение стабилизации однотипных стабилитронов имеет значительный разброс, то для подбора стабилитронов надо собрать схему из последовательно соединенных источника постоянного напряжения с напряжением, превышающим напряжение стабилизации на 25…50 %, переменного резистора 500…1000 Ом, проверяемого стабилитрона и миллиамперметра. Для измерения напряжения стабилизации на стабилитроне надо иметь вольтметр с входным сопротивлением не менее 1 кОм/В (входное сопротивление универсального вольтметра не менее 45 кОм/В). С помощью переменного резистора устанавливают силу тока в цепи, равную рабочей силе тока стабилитрона, и измеряют напряжение стабилизации.
Для увеличения мощности рассеивания стабилитронов применяют радиаторы. В простейшем виде теплоотвод (радиатор) представляет собой две алюминиевые пластинки толщиной 2 мм и площадью 200…220 см.
Для эффективного отвода тепла пластины хорошо прижимают к корпусу стабилитрона. Чтобы улучшить тепловой контакт, надо со стабилитрона в местах соприкосновения его с пластинами удалить краску и смазать невысыхающей смазкой, например, силиконовой. Это позволяет увеличить силу тока стабилизации стабилитронов, например, типа Д808…Д813 в десятки раз.
Для проверки исправности стабилитронов Д808…Д813, Д815 и др. можно воспользоваться любым авометром. Если при измерении прямого сопротивления авометр покажет сопротивление 100… 150 Ом, а при измерении обратного сопротивления стрелка прибора не сдвинется с места (на шкале "Ω∙10"), то стабилитрон считается исправным.
Если у вас нет нужных стабилитронов, можно использовать регулируемый аналог на транзисторах (рис. 4.13, б). Он имеет такую же ВАХ, как и стабилитрон, причем напряжение стабилизации можно регулировать в пределах 3…20 В резистором R1. Аналог представляет собой двухкаскадный усилитель постоянного тока (УПТ), охваченный отрицательной обратной связью (ООС) через делитель напряжения R1, R2, R3. Напряжение стабилизации определяется соотношением сопротивлений резисторов делителя, который устанавливают таким, чтобы напряжение на эмиттерном переходе транзистора VT1 было равно 0,7 В. При увеличении, например, напряжения на аналоге напряжение на базе транзистора VTI тоже увеличится, что приведет к увеличению тока через транзистор VT2, а следовательно, к компенсации повышения выходного напряжения. При указанных на схеме номиналах элементов регулируемый аналог имеет следующие характеристики:

Для установки напряжения стабилизации аналог подключают к источнику с напряжением 20…30 В через балластный резистор Rб сопротивлением 5…10 кОм и подстроечным резистором R1 устанавливают необходимое напряжение на выводах аналога.
Допускается последовательное соединение любого числа стабилитронов. Это в ряде случаев оказывается конструктивно и экономически выгоднее, чем использование одного более мощного и высоковольтного стабилитрона. В целях резервирования (повышения надежности бесперебойной работы) стабилитроны одного типа могут быть включены параллельно. При этом суммарная мощность, рассеиваемая на всех стабилитронах, не должна превышать максимально допустимую мощность рассеивания одного стабилитрона данного типа. Стабилитроны средней и большой мощности при работе должны устанавливаться на радиаторах.
Для повышения надежности работы стабилитронов целесообразно их эксплуатировать на 20…30 % ниже предельных значений по мощности рассеивания.
4.3. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ
4.3.1. Общие сведения
"Транзистор" в переводе с английского означает "преобразователь сопротивления". Это полупроводниковый прибор, который служит для усиления и переключения сигналов.
Транзисторы, в которых прохождение тока через кристалл полупроводника обусловлено движением двух различных типов носителей заряда (электронов и дырок), называют биполярными. Особую группу составляют полевые, или униполярные транзисторы, которые работают с носителями заряда лишь одного знака (электронами или дырками), а также однопереходные транзисторы (двухбазовые диоды). Пока что мы будем вести речь о биполярных транзисторах, называя их просто транзисторами.
Выпускаются германиевые и кремниевые транзисторы. Они бывают р-n-р (читается "П-Н-П") и n-р-n (читается "Н-П-Н") структуры. УГО этих транзисторов и их диодные эквивалентные схемы приведены на рис. 4.14.

Рис. 4.14.УГО и эквивалентные схемы биполярных транзисторов
В настоящее время большинство транзисторов, в том числе транзисторы интегральных схем, выпускают на основе кремния, и они имеют, как правило, структуру n-р-n типа.
Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим n- или p-слоем. Электрод, связанный с ним, называется базой Б, а два других электрода называются эмиттером Э и коллектором К.
Диодные эквивалентные схемы поясняют структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Кроме того, диодные эквивалентные схемы позволяют определить практически структуру и электроды неизвестного транзистора, о чем разговор пойдет ниже.
На рис. 4.15 показаны условные графические обозначения транзисторов n-р-n и р-n-р структуры, выполненные на основе германия и кремния, и типовые напряжения на их электродах.