Медведев Рой Александрович - Атомная катастрофа на Урале стр 25.

Шрифт
Фон

Проверка этой идеи проводилась на двух видах мышей, обитавших в радиоактивной среде: на красных полевках (Clethrionomus rutilus) и лесных мышах (Apodemus sylvaticus). Когда был начат этот опыт и в каком году проводились исследования радиоустойчивости мышей и динамики хромосомных аномалий в их клетках под действием внешнего облучения (сравнительно с контролем), авторы не сообщают. Однако они, естественно, приводят данные о том, что к моменту начала их опытов на загрязненной территории "сменилось около 25–30 генераций животных" [49. С. 194]. Нетрудно подсчитать, что для смены стольких генераций необходимо 10–11 лет. Я уже примерно рассчитывал выше (в разделе "Челябинская катастрофа…"), что при типичном для мышей расселении новых выводков на достаточно большие расстояния уверенность о том, что вылавливаемые после 30 поколений мыши являются потомками тех, которые жили в этом же биоценозе 10–11 лет назад, может существовать лишь при загрязнении очень больших территорий, примерно радиусом 30 км. У Дубинина с соавторами не указаны размеры загрязненных территорий, но в таблицах, демонстрирующих влияние радиоактивного биоценоза на частоту возникновения хромосомных аномалий, уровни загрязнения двух сравниваемых биоценозов по стронцию-90 даны в кюри на квадратный километр. Во всех других исследованиях животных и растений, которые уже были ранее рассмотрены, активность среды обычно дается на квадратный метр, кюри/км появляется впервые [49. С. 196] – по-видимому, по недосмотру цензуры. В конце концов, даже цензоры, специализирующиеся на научных публикациях, могут пропустить мелкие детали, особенно в цифрах, таблицах и единицах измерения.

Сравнивались два биоценоза: (1) контрольный – 1000–1500 кюри/км, (2) 1800–3500 кюри/км. В расчете на 1 м это составляет 1–1,5 мкюри, 1,8–3,5 мкюри. Эти же значения приводит и Ильенко, работавший в том же районе, только у него не 3,5, а 3,4, но возможно, что Дубинин округлил. Но если счет активности идет на тысячи кюри и на квадратные километры, то сразу ясно, что это никак не экспериментальный, искусственно созданный участок.

Для опытов такого рода, когда животные обитают в загрязненной зоне около 10 лет, радиоактивность биоценоза нужно давать в динамике по годам, но такой возможности не было и у Дубинина. Выводы Дубинина с сотрудниками по этой серии опытов состоят в том, что у мышей, длительное время обитавших в условиях радиоактивной среды, заметно увеличен так называемый мутационный груз и поэтому выше и частота соматических мутаций. Однако их клетки обладают большей радиорезистентностью к дополнительным дозам радиации. В отличие от аналогичных опытов Ильенко с сотрудниками [33], когда радиочувствительность определялась по смертности от внешнего гамма-облучения, группа Дубинина выявляла радиочувствительность по увеличению частоты хромосомных перестроек от дополнительного количества стронция-90, вводимого мышам путем инъекций.

Другая серия исследований по популяционной генетике проводилась с одноклеточной почвенной водорослью хлореллой (Chlorella), и все связанные с ними материалы публиковались В. А. Шевченко с соавторами (Институт общей генетики АН СССР). Эта группа и раньше проводила опыты по генетике хлореллы (Шевченко публиковал ранее результаты многих чисто лабораторных экспериментов по ее радиационной генетике [60]). В 1970 г. В. А. Шевченко опубликовал интересное исследование по радиационной генетике хлореллы в условиях естественного биоценоза [61]. Работы с почвенной водорослью не требуют обширных пространств и могут быть проведены на нескольких квадратных метрах в естественных условиях – на почве, экспериментально загрязненной стронцием или цезием. Не было бы никаких оснований считать, что радиационные исследования с хлореллой В. А. Шевченко действительно проводил в Челябинской области, если бы в автобиографии Н. П. Дубинин не сказал о том, что опыты его сотрудников с хлореллой проводились в том же загрязненном районе, где они вели в течение 11 лет наблюдения и над другими видами. В этом районе, по словам Н. П. Дубинина, "часть видов эволюционировала в сторону создания более радиоустойчивых форм. Эти новые популяции перестали страдать от воздействия определенных доз радиации. Таким видом оказалась одноклеточная зеленая почвенная водоросль хлорелла. Однако, чтобы создать через мутации и отбор новую радиоустойчивую хлореллу, понадобилось пять лет, в течение которых прошло 200 поколений ее жизни в условиях высокого фона радиации" [51. С. 330].

Но в действительности дело обстояло не совсем так. В. А. Шевченко начал брать пробы почвы для изучения хлореллы только через пять лет после загрязнения радиоактивностью естественного ландшафта. В последней публикации из этой серии – обзоре, написанном им совместно с Дубининым и др., говорится, что пробы хлореллы "были взяты через 5, 6 и 11 лет с момента внесения радионуклидов. При этом к последнему сроку анализа природного материала в популяциях хлореллы прошло около 400 поколений" [49. С. 182]. Годы взятия проб не указаны, но этот обзорный ежегодник, вышедший в свет в 1972 г., был (судя по выходным данным) сдан в набор 22 ноября 1971 г. Сборники-ежегодники большого объема готовятся к печати в СССР не меньше 7–8 месяцев, поэтому статья-обзор была завершена, очевидно, в начале 1971-го или в конце 1970 г. (в списке литературы к статье нет ни одной ссылки на работы, напечатанные позднее 1969 г.). Поэтому начало (11 лет назад) экспериментов с хлореллой опять проецируются на 1957–1958 гг., когда произошла уральская катастрофа.

Вполне естественно, что если бы группа Шевченко проводила экспериментальное загрязнение почвы в 1958 г., то и проверка радиоустойчивости водорослей была бы начата не с 201-го поколения и не через 5 лет. Однако главная особенность этого исследования состоит в том, что материал для своей работы В. А. Шевченко с сотрудниками собирали с участков исключительно высокой активности. Динамику активности по годам авторы, естественно, не приводят, но они не приводят и уровни загрязнения в милликюри или в микрокюри. Но так как для выделения штаммов водорослей необходимо было брать пробы почвы, то радиоактивность почвы тоже измерялась и дается в импульсах (распадах) в минуту на 1 кг почвы. В опыте, кроме контроля, было шесть вариантов с разными уровнями загрязнения, в первом активность почвы составляла "от 1·10 до 1·10" распадов в минуту на 1 кг, в последнем от 1·10-1·10. 1 микрокюри дает 37 000 распадов в секунду, то есть около 2·10 распадов в минуту; 2·10 распадов в минуту – это милликюри. Если на экспериментальном участке было от 1 до 10 милликюри на 1 кг почвы, то на 1 м в слое глубиной 10 см активность должна доходить до 1 кюри. Такая концентрация в хронической форме летальна для всех животных и более сложных растений, и практически только одноклеточные водоросли, относящиеся к наиболее устойчивым к радиации в живом мире видам, могли выдерживать столь высокие дозы и выживать без какого-либо заметного угнетения. В опытах из почв были выделены три вида: Chlorella vulgaris, Chl. terricola, Chl. ellipsodea, причем на долю первого приходилось около 80 %, и с ним проводились в основном дальнейшие опыты.

Детали измерения радиоактивности почвы (тип счетчика, эффективность и т. д.) не приводятся, поэтому трудно судить, насколько значения типа 10 или 10 представляют результат отсчета с полным анализом эффективности. Водоросли развиваются в поверхностных слоях почвы, и отбор проб производился из самого верхнего слоя толщиной 0,2–0,5 см. Из этого же слоя брались и пробы почв на определение активности. Но через 5 лет после поверхностного выпадения радионуклидов именно в этом слое могли произойти наиболее сильные изменения удельной активности – за 5 лет до начала измерений этот слой мог быть намного активнее. Отсутствие исходных, весьма важных данных еще раз показывает, что авторы не проводили сами закладку опытов, а пользовались, с большим опозданием, уже имевшимся загрязнением. Поскольку на этом участке загрязнения уровень радиоактивности доходил почти до 1 кюри/м, то можно предположить, что он располагался где-то близко к эпицентру первичного загрязнения. Вряд ли на этих участках могла выживать какая-либо поверхностная растительность – их можно представить лишь как голую почву с развивающимся в поверхностном слое позеленением от водорослей при наличии увлажнения.

В условиях промышленного загрязнения именно такие "голые" участки представляют наибольшую опасность для разноса активности путем ветровой эрозии, и столь сильно активную почву следует либо перемещать глубокой вспашкой на большую глубину, либо вывозить для более глубокого захоронения. Почему через 5, 6 и 11 лет после загрязнения в этой зоне были еще столь активные на поверхности участки, остается неясным. Такие участки созданы не природой, а покрыты высокоактивными реакторными отходами, смешанными с почвой. Они крайне опасны как источники вторичного загрязнения и должны обязательно ликвидироваться. Наличие таких участков в течение многих лет после аварии может служить причиной беспокойства.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3