В принципе, электрон может оставаться на высшем уровне достаточно долго. Это случается, когда окружающее пространство заполнено излучением и электрону трудно отдать излишек энергии. Например, атом находится внутри раскаленной солнечной короны. Возможно, электрон излучает квант в пространство, но он тут же получает его обратно. В этом смысле все разрешенные орбиты тоже можно называть стационарными, так как, находясь на них, электрон сохраняет энергию. Это противоречит теории Максвелла, исходя из которой, электрон при непрерывном вращении должен постоянно излучать энергию, уменьшая радиус вращения, пока не упадет на ядро. Это не соответствует практике: ведь атомы стабильны. Очевидно, электрон излучает излишек энергии только при переходе с высшего уровня на низший. Как он это делает – тайна века! Фейнман говорил, что самая большая загадка электрона в том, что он имеет массу покоя. Действительно, свободный электрон имеет массу, это признак частицы. Но, находясь внутри атома, он легко поглощает и генерирует фотоны, которые не имеют массы покоя. Здесь есть о чем подумать.
Мы уже говорили, что электрон излучает квант в течение 10 с независимо от величины его энергии. Это интересно. Допустим, электрон перескочил с уровня № 3 на № 2. В этом случае энергия кванта составит: Е3 – Е2 = -1.5 – (-3.4) = 1.9 (эВ) (48.2). Получается, что при переходе 2→1 энергия излучения в пять раз больше, чем при переходе 3→2, хотя время излучения одинаково. Это возможно, если скорость излучения в первом случае больше. Но скорость излучения есть энергия, деленная на время. Выходит, энергия кванта пропорциональна параметру, который измеряется в с.
Такую размерность имеет частота, которую в квантовой физике принято обозначать как ν.
Обозначим энергию излученного кванта как εmn = Em – En (48.3), где m, n – номера разрешенных уровней (m>n). Эта энергия пропорциональна некоей величине, измеряемой в с, как частота ν. Но мы не можем просто написать: ε=ν. Энергия измеряется в джоулях, а частота в герцах. Нужен переходный коэффициент. Обозначим его h. Тогда: ε = hν (48.4). Уравнение (48.4) определяет энергию кванта излучения. Величину h называют постоянной Планка. Интересно выяснить ее физический смысл. Перепишем (48.4) в виде h = ε/ν (48.5). Из уравнения (48.5) следует, что постоянная Планка численно равна энергии кванта при ν=1 с. Очевидно, в микромире 1 Гц это частота, которой соответствует минимальный квант энергии. Постоянную Планка h еще называют квантом действия. Расчеты показывают, что величина h = 4.114х10 эВ с. Это действительно очень маленькая величина. Подчеркнем, что в теории квантов ν – это просто число, на которое нужно умножить h, чтобы получить энергию кванта.
Зная энергию кванта, легко вычислить его частоту. Перепишем (48.4) в виде: ν = ε21/h (3.6). Тогда для кванта ε21 = 10.2 (эВ) имеем: ν = 10.2/4.14х10 = 2.47х10 (Гц). Это большая величина, если под ν понимать частоту колебаний поля. Из теории Максвелла следует существование электромагнитной волны, которая перемещается со скоростью света. Герц опытами доказал, что такие волны существуют, по крайней мере, в диапазоне радиочастот. Предположим, что квант излучения есть фрагмент этой волны, причем частота кванта совпадает с частотой волны. Вычислим длину этого фрагмента. Если скорость кванта равна скорости света с = 2.99х10 м/с, а время излучения равно 10 с, то расстояние между началом и концом кванта равно: L = 2.99х10 х10 = 2.99 (м). По сравнению с диаметром орбиты электрона эти три метра огромная величина, почти бесконечность. В таком случае при изучении квантов мы можем использовать некоторые методы теории Максвелла-Герца, которая описывает идеальные бесконечные электромагнитные волны света.
Световые волны, согласно Герцу, занимают диапазон от 380 нм (фиолетовый край) до 760 нм (красный край). Попробуем вычислить "длину" волны для кванта с энергией ε21 = 10.2 эВ. Согласно теории волн: λ = сТ = с/ν = 2.99х10/2.47х10 = 1.21х10 = 121 (нм). Выходит, квант с длиной волны 121 нм попадает за фиолетовый край, видеть его нельзя. Такой свет называют ультрафиолетовым. Кванты от переходов электрона с еще более высоких уровней на первый имеют еще большую частоту и, следовательно, еще меньшую длину волны. Значит, все они находятся в ультрафиолетовой зоне и тоже невидимы.
Возникает вопрос, какие кванты из спектра водорода может видеть человек? Для этого надо вычислить "длину" волны, соответствующую квантовому переходу, и сравнить её с диапазоном Герца. Попробуем вычислить λ для кванта, излучаемого при переходе с 3-го уровня на 2-й: ε32 = – 1.5 – (– 3.4) = 1.9 (эВ). Соответствующая частота ν32 = 1.9/4.14х10 = 0.45х10 (Гц), тогда λ32 = 2.99х10/0.45х10 = 664 (нм). В справочнике по оптике находим, что эта длина волны соответствует красному цвету. Аналогичные расчеты дают: для кванта ε42 длина волны λ42 = 613 нм, что соответствует оранжевому цвету, для кванта ε52 длина волны λ52 = 433 нм, что соответствует темно-синему цвету. Из справочника известно, что атом водорода также испускает излучение с длиной волны 410 нм, имеющее фиолетовый цвет. Очевидно, оно соответствует кванту ε62. Следующие кванты серии εm2 уже попадают в ультрафиолетовую область. С другой стороны, расчеты показывают, что при переходе электрона с четвертой орбиты на третью кванту ε43 соответствует длина волны 1880 нм. Это лежит за инфракрасной границей. Кванту ε53 отвечает длина волны 1278 нм, это тоже в инфракрасной области.
Глава 7. Свет
§ 49. Оптические спектры
Оптическим спектром называют картинку, которая получается при разложении света на составные части. Для измерения спектров используют приборы спектрометры. Спектры дают истинную информацию о строении материи. Если теория света противоречит результатам спектрометрии, значит, она неверна.
Картинку солнечного спектра получить нетрудно. Закроем окно старой черной шторой, в которой проделаем отверстие диаметром около 1 см (старую штору не жалко). Солнечный луч впустим через отверстие и направим на боковую грань треугольной стеклянной призмы, поставленную на её основание. Параллельно другой грани призмы установим белый экран. При определенном угле падения невидимого луча света (если в комнате нет пыли) световое пятнышко на экране растянется в радужную полоску шириной 1 см и длиной около 5 см. Это и есть солнечный спектр, известный со времен Ньютона. Если призма стоит острым углом влево, то цвета в полоске располагаются слева направо в следующем порядке: красный, оранжевый, желтый и т. д., до фиолетового. Согласно теории Максвелла-Герца, каждому оттенку цвета в полоске соответствует электромагнитная волна определенной частоты (или длины волны). Такую волну называют монохроматической (одноцветной) в том смысле, что одна частота отвечает за один оттенок цвета. Считается, что Солнце излучает электромагнитные волны всех частот. Поэтому в солнечном спектре оттенки цветов непрерывно переходят один в другой.
Изменим опыт: между призмой и экраном поставим колбу с атомарным водородом. Мы увидим, что в солнечном спектре места некоторых цветов заняли вертикальные черные линии. Фраунгофер первым догадался, что это "тени" от атомов водорода и назвал их "линиями" поглощения водорода. Заметим, термин "линия поглощения" означает не геометрическую линию, а определенную частоту. Так, если отверстие в шторе уменьшить до 1 мм, радужная полоска на экране сузится в черту, а линии поглощения станут черными точками. Если в солнечном спектре в данном месте появилась черная линия, значит, фотоны с данной частотой поглощены атомами водорода (вот откуда термин "поглощение").
Кирхгоф доказал, что водород поглощает только те линии, какие может излучать сам. Бальмер показал, что расположение линий поглощения в спектре водорода подчиняется правилу: ν = R(1/4 – 1/m) (49.1), где ν – частота по Герцу, R – постоянная Ридберга: R=3.29*10 с. Учитывая, что 4 = 2, формулу (49.1) можно переписать в виде: ν = R(1/n – 1/m) (49.2). Тогда линии Бальмера (серия линий) получаются из (49.2) при n = 2. При других значениях n получаются, очевидно, другие серии линий поглощения. Действительно, когда изобрели ультрафиолетовые спектрометры, Лайман открыл в спектре водорода серию линий, отвечающих уравнению (49.2) при n = 1. Её назвали серией Лаймана.