§ 26. Параметры тока
Электрическое поле генератора совершает работу A по перемещению заряда Q в цепи. Очевидно, чем больше величина работы, тем больший заряд перемещается в данную точку. Но мы не можем просто приравнять заряд к работе, так как работа измеряется в джоулях, а заряд в кулонах. Нужен переходный коэффициент. Обозначив его буквой φ, мы можем написать: A = φQ (26.1). Чтобы понять смысл параметра φ, перепишем (26.1) в виде: φ = A/Q (26.2). Если Q равен 1 Кл, из уравнения (26.2) следует, что φ = A. Другими словами, величина φ численно равна работе генератора для переноса заряда 1 Кл от полюса генератора в данную точку. Величину φ принято называть потенциалом электрического поля в данной точке. Очевидно, потенциал снижается от точки к точке, потому что при движении заряда от полюса к полюсу его энергия уменьшается. Если потенциалы в точках 1, 2 обозначить φ1, φ2, а их разность обозначить U, можно записать: U = φ1 – φ2 (23.3). Величину U называют электрическим напряжением. Единица измерения напряжения называется вольт (В). Разность потенциалов между разомкнутыми полюсами генератора исторически называют электродвижущей силой, или просто э.д.с. Следует сказать, что это никакая не сила, а просто разность потенциалов между полюсами, когда нет тока в цепи. Этот термин появился давно, когда первые исследователи считали, что заряды перемещает особая сила. Обозначают э.д.с. греческой буквой Є. Точные измерения показывают, что напряжение, когда есть ток в цепи, меньше э.д. с, когда тока нет. Это объясняется тем, что при разомкнутой внешней цепи согнанные к полюсу электроны остаются в генераторе и потенциал на отрицательном полюсе держится выше. Очевидно, э.д.с. равно разности потенциалов между полюсами генератора в отсутствие тока. Мы будем использовать термин "напряжение", как более современный.
С учетом (26.1) и (26.3) работа генератора по переносу заряда Q от точки 1 к точке 2 во внешней цепи равна: A = UQ (26.4). Разделив обе части (3.4) на время t работы генератора, получим: A/t = UQ/t (26.5). Учитывая, что Q/t = I, получаем: A/t = U I (26.6). Слева в (26.6) стоит механическая мощность генератора. Значит, справа стоит электрическая мощность тока, выраженная через электрические параметры: Р = U I (26.7). Для определения единицы напряжения перепишем уравнение (26.4) в виде: U = A/Q (26.8). Если в (26.8) А = 1 Дж, Q = 1 Кл, то 1 В = Дж/Кл. Для выражения единицы мощности через параметры тока воспользуемся (26.7). Если в уравнении (26.7): U = 1 В, I=1 А, то 1 Вт = 1 В А.
§ 27. Ток в металлах
Возникает вопрос: если электрон в электрическом поле должен двигаться с ускорением, как любая частица в силовом поле, тогда почему электрический ток в проводе не растет до бесконечности? Дело в том, что ток в металлах не похож на ток в вакууме. В вакууме электроны, слегка расталкивая друг друга своими микрополями, летят, как полагается, с ускорением навстречу внешнему полю. Это похоже на массовый забег спортсменов в день физкультурника. В толще металла наблюдается другая картина. Здесь уже имеются связанные электроны, удерживаемые протонами в ядрах атомов металла. Эти связанные электроны притягиваются и к соседним ядрам, образуя вытянутые электронные оболочки, между которыми остается немного незанятого пространства. Под действием приложенного к проводу внешнего поля свободные электроны летят, натыкаются на электронные оболочки, отскакивают обратно, потом все же проскальзывают в щели между ними. Это напоминает игру в регби, когда атакующие налетают на защитников противника, останавливаются, порой отступают, но затем, изловчившись, пробегают сквозь дыры в обороне и мчатся вперед, к зачетной линии. В электротехнике этот эффект называют сопротивлением проводника электрическому току, или просто сопротивлением. Сопротивление обозначают буквой R. Таким образом, ток в проводнике существует в виде некоего среднего перемещения электронов через поперечное сечение провода вдоль его оси.
Опытами установлено, что сила тока в металлах пропорциональна напряжению U на участке цепи и обратно пропорциональна сопротивлению R участка. Эту зависимость можно записать в виде уравнения: I = U / R (27.1). Это уравнение является важнейшим в теории электричества. Его открыл Георг Ом. В его честь уравнение (27.1) называют законом Ома. Если (27.1) переписать как: R= U/I и принять U = 1 В, а I = 1 А, то сопротивления R будет равно1 Ом. Значит, 1 Ом = В/А.
Очевидно, чем длиннее провод, тем больше его сопротивление. С другой стороны, чем больше площадь его сечения, тем больше "щелей" между электронными оболочками, тем меньше сопротивление. Наконец, сопротивление зависит от вида металла провода. Эти технические параметры, в общем, уже определяют сопротивление R провода по формуле:
R = ρ l /S (27.2),
где l = длина провода, S – площадь его сечения, ρ – удельное сопротивление данного металла (берется из справочника). Например, медный провод длиной 1 м и сечением 1 мм имеет сопротивление около 0,02 Ом. Столбик ртути длиной 1 м и сечением 1 мм имеет сопротивление почти 0,96 Ом. Указывая сечение в мм, а не в м, мы немного отошли от системы СИ ради здравого смысла, так как провода с сечением жилы 1 м в жизни не встречаются.
Задача. Корпус станка заземлен (соединен с землей) алюминиевым проводом диаметром 2 мм и длиной 15 м.
Найти сопротивление заземления.
Решение: S = π D /4 = 3,14 х 2 / 4 = 3,14 (мм). В справочнике находим для алюминия значение ρ = 0,028. Подставляя в формулу (27.2) получаем: R = 0,028 х 15 / 3.14 = 0,134 (Ом).
Сопротивление металлов увеличивается с ростом температуры t. Объясняют это тем, что с повышением температуры ядра в узлах кристаллической решетки вещества колеблются быстрее и щели между их электронными оболочками перекрываются чаще. Зависимость сопротивления металла от температуры принято записывать в виде: ρ = ρ0 (1+α t), (27.3), где ρ0 – удельное сопротивление металла при t = 0, α – температурный коэффициент сопротивления данного металла. Его значение тоже берут из справочника.
§ 28. Полупроводники
По концентрации свободных электронов полупроводники (а к ним относятся кристаллы углерода, кремния, германия и некоторые другие) занимают промежуточное положение между металлами и диэлектриками (изоляторами). Если взять слиток чистой меди объемом 1 см, то в нем будет около 10 свободных электронов, причем это число не зависит от температуры. В таком же кубике фарфора при любой температуре насчитывается не более сотни свободных электронов, что почти ничего. Именно поэтому из меди делают провода, а из фарфора – изоляторы (лучшие изоляторы получаются из китайского фарфора). Из полупроводников делают интегральные микросхемы, основу современной электроники.
Кристалл кремния объемом 1 см при температуре 0 ºC одержит порядка 10 свободных электронов, а кристалл германия – почти 10. По данному параметру кремний и германий находятся посередине между металлами (10) и изоляторами (10). Поэтому их назвали полупроводниками. Другим признаком полупроводника является то, что при нагревании концентрации свободных электронов в нем увеличивается. Чтобы понять, как в кристалле появляются свободные электроны, надо вспомнить, как они удерживаются в узлах решетки.
Считается, что закон притяжения заряженных частиц открыл Кулон. При этом забывают, что Кулон фактически открыл два закона. Первый закон устанавливает силу, с которой отталкиваются две одноименно заряженных частицы, имеющие заряды q1 и q2, на расстоянии r: F1 = K1q1q2/ r (28.1), где К1 – первая постоянная Кулона. Второй закон Кулона устанавливает силу, с которой притягиваются две разноименно заряженных частицы: F2 = – K2 q1 q2 / r (28.2), где К2– вторая постоянная Кулона. Знак минус стоит потому, что произведение зарядов с противоположными знаками всегда меньше нуля. Поэтому сила притяжения отрицательна. В отличие от Кулона, который жил в XVIII веке и ничего не знал о протонах и электронах, мы не можем заранее полагать, что электрон отталкивается от электрона с такой же силой, с какой притягивается к протону. Именно поэтому мы разделили закон Кулона на два уравнения. Новейшие измерения показывают, что К1 = К2 = К = 1/4πε0 = 9,0 х 10 (В м/Кл) вплоть до внутриатомных расстояний. Если K1 отличается от K2, то на расстоянии меньше, чем 10 м. Этот результат странным образом созвучен с выводом из теории гравитации Логунова, согласно которому расхождение между инерционной и гравитационной массами наступает после 13-го знака после запятой. Возможно, "релятивистская" теория электричества еще ждет своего автора.