Проведённые Е. Н. Майзельсом доработки кажутся сейчас очевидными, но тогда, почти 60 лет назад, тщательная и кропотливая исследовательская работа, выполненная Е. Н. Майзельсом, являлась по существу новаторской. Важно то, что экспериментальные результаты были подтверждены теорией. Совместная статья Е. Н. Майзельса и П. Я. Уфимцева, опубликованная позднее, свидетельствовала о том, что измеренная и теоретическая диаграммы рассеяния, полученные на модели с характеристикой ka = 5 (k = 2π/λ, где λ – длина волны, а – радиус модели), достаточно близки друг к другу.
Выше мы говорили о том, что в станции "Лес" впервые в мировой практике в начале 50-х годов 20 века были воплощены в жизнь технические средства борьбы с отражениями от гидрометеоров. А как при этом решалась основная задача РЛС по засечке отметок от полезных целей? Здесь следует остановиться на теоретической и экспериментальной стороне дела. Сначала о теории. Как показал П. Я. Уфимцев в своей книге, на каждом элементе освещённой поверхности идеально проводящего тела, на которое падает плоская электромагнитная волна, возбуждается такой же ток, как на касательной к этому элементу идеально проводящей плоскости бесконечных размеров. Рассеянное поле, создаваемое таким током, определяется с помощью уравнений Максвелла. Сам возбуждаемый на плоскости ток распределён на ней равномерно и поэтому может быть отнесён к "равномерной" части поверхностного тока. Кроме "равномерной" составляющей в суммарный ток входит компонента, обусловленная искривлением поверхности тела. Дополнительный ток, вызванный искривлением, по терминологии П. Я. Уфимцева является "неравномерной" частью суммарного тока. "Неравномерная" компонента тока возникает вблизи границы между освещённой и теневой частями поверхности тела, а также вблизи краёв, изломов, острий и т. д. Если размеры тела существенно превышают длину волны, дополнительные токи обычно занимают сравнительно небольшую часть его поверхности. При облучении тел волнами круговой поляризации именно неравномерная составляющая рассеянного поля подавляется поляризатором наиболее сильно. Уфимцев доказывает, что деполяризация отражённого сигнала вызвана только неравномерной частью тока. Что касается "равномерной" части поля, то она также ослабляется поляризатором, но существенно меньше (6–8 дб). Экспериментально показывается, что общий выигрыш в наблюдаемости полезных целей на фоне дождя имеет порядок 15–18 дб.
Доработанные станции "Лес" проходили испытания в 1953 г. Выбирались различные позиции для оценки возможностей и основных показателей работы станций. Станции действовали в открытой местности, поросшей кустарником, залесенной, где в качестве целей использовались одиночные автомашины или колонны грузовиков, на берегу крупных водоёмов при работе по морским целям. Для съёма координат объектов одновременно работали две станции, в головной находился Гуськов и команда, на станции-дублёре в качестве оператора работал я. Кроме того, применялись оптические средства наведения (теодолиты).
Станции уверенно засекали движущие цели в радиусе прямой видимости, особенно впечатляла возможность различения отметок от автомашин, движущихся колонной. Если дорога позволяла и машины могли передвигаться "фронтом", определялся угол разрешения. Нужно сказать, что понятие "высокое разрешение целей" мы тогда почувствовали на практике. Система дальнометрии также показала все свои качества. Когда машины двигались с интервалом 7–8 м, а отметки от них различались на экране индикатора, точность определения дальности отдельных машин определялась единицами метров. Угловая точность во много зависела от натренированности операторов. Опытный оператор был способен засечь цель с точностью до 5′. При работе станции на берегу озера или моря нередкими были случаи обнаружения морских целей далеко за пределами прямой видимости, что, по-видимому, было связано с явлением рефракции радиоволн.
К началу государственной приёмки станции "Лес" (1954 г.) для опытных образцов РЛС были изготовлены доработанные антенны, которые после заводских испытаний были установлены на посадочные места кабины и закрыты радиопрозрачным колпаком.
Что же представляла собой антенна станции "Лес"? Это была антенна, относящаяся к группе линзовых антенн и формировавшая в диапазоне миллиметровых волн остронаправленную диаграмму. Антенна обеспечивала качание главного лепестка диаграммы направленности в сравнительно широком рабочем секторе. При этом принципиально важным было то, что качание осуществлялось не путём возвратно-поступательного движения облучателя, а с помощью его вращения по замкнутой кривой, что облегчало использование антенны и её стыковку с другими элементами станции. Правильный выбор основ построения антенны позволил создать хотя и сложную, но размещённую в небольших габаритах подвижного носителя конструкцию, отвечавшую всем требованиям, предъявляемым к станции "Лес". Разработчик антенны И. Б. Абрамов фактически создал новый тип устройства – металловоздушную линзовую антенну с качанием луча – и притом в новом диапазоне волн. Попробую объяснить на простейших примерах принцип действия подобных антенн. Начну с фокусировки. Задачей фокусирующей линзы является преобразование сферических волн, радиально расходящихся из источника, в плоскую волну – параллельный пучок. Применительно к антеннам это означает, что для формирования остронаправленных диаграмм необходимо иметь в излучающем раскрыве антенны синфазное поле с почти постоянной амплитудой. Поперечные размеры линз много больше длины волны, и к ним применимы законы геометрической оптики. Рассматривая однопреломляющие линзы, отметим, что у поверхности линзы как на границе раздела двух сред лучи будут преломляться, причём действует закон синусов: отношение синуса угла падения к синусу угла преломления обратно пропорционально отношению коэффициентов преломления сред. В свою очередь, коэффициент преломления среды есть отношение скорости света к фазовой скорости в этой среде. Итак, преобразование расходящегося пучка лучей в параллельный может производиться с помощью ускоряющей линзы (тогда отношение коэффициентов преломления меньше единицы) или с помощью замедляющей линзы (указанное отношение > 1).
Существует большое разнообразие линзовых антенн с фиксированным облучателем, переводящих радиальный пучок лучей в параллельный. К ним относятся ускоряющие металлопластинчатые (волноводные) линзы, замедляющие линзы из искусственного диэлектрика и ряд других.
Другая большая категория линзовых антенн способна работать при переменном положении облучателя и предназначена для качания луча в пространстве. Аналогами таких антенн в оптике являются, например, двухпреломляющие линзы, устраняющие искажения при воспроизведении протяженных предметов (апланаты). В однопреломляющей линзовой антенне при выносе облучателя из фокуса преломленные лучи уже не образуют параллельный пучок, вследствие чего возникают искажения диаграммы (несимметрия главного лепестка, возрастание боковых лепестков, снижение КПД и пр.). Для апланатической линзовой антенны можно достичь условия идеального фокусирования как в самом фокусе, так и в двух других точках, симметрично расположенных относительно фокуса. Смещая облучатель из фокуса по нормали к оси линзы в пределах указанных точек, правильно выполненный апланат обеспечивает поворот луча антенны на соответствующий угол без существенных искажений. Двухпреломляющие линзовые антенны для качания луча могут быть реализованы с помощью металлопластинчатой конструкции. Кроме того, для качания луча используются линзы с переменным коэффициентом преломления (сферическая и цилиндрическая линзы Люнеберга, линзы Максвелла и др.). Однако изготовление диэлектрических линз с большим диаметром представляется трудно разрешимой задачей.
В металловоздушных линзах энергия распространяется между двумя параллельными металлическими поверхностями. Эти поверхности изгибаются таким образом, чтобы лучи на выходе оказались параллельными. Поэтому в таких линзах можно обойтись без диэлектрика. Если расстояние между поверхностями меньше длины волны и существенно меньше их радиусов кривизны, применима лучевая трактовка, когда волны распространяются вдоль лучей по кривым минимальной длины (согласно принципу Ферма). Обычно используется поперечная ТЕМ-волна, распространяющаяся с фазовой скоростью, зависящей от коэффициента преломления образовавшегося волновода. Для обеспечения вращательного движения облучателя часть поверхности линзы, на которой расположена дуга качания, сворачивают, превращая её в замкнутую кривую. Устранение искажений диаграммы направленности при качании луча и реализация принципа апланата, компенсирующего искажения, осуществляется в данном типе линзовых антенн путём двойного изгиба поверхностей линзы с разными радиусами кривизны.