Николай Левашов - Неоднородная Вселенная стр 51.

Шрифт
Фон

Николай Левашов - Неоднородная Вселенная

Рис.3.3.5. Сопоставление степени влияния на окружающий микрокосмос (микропространство) атома водорода H и атома урана U. Собственный уровень мерности урана U позволяет ему быть устойчивым в пределах незначительного диапазона мерности. Именно поэтому уран и все трансурановые элементы радиоактивны, т.е., неустойчивы, практически, при любых условиях. В то время, как водород и другие лёгкие элементы, становятся неустойчивыми только в определённых условиях. Чем легче элемент, тем он более устойчив, а это означает, что необходимо большее внешнее воздействие, чтобы вызвать его неустойчивость.

1. Нижний уровень мерности физически плотной сферы.

2. Верхний уровень мерности физически плотной сферы.

Рис. 3.3.6.

Николай Левашов - Неоднородная Вселенная

Рис. 3.3.6. Синтез атомов водорода может происходить в пределах практически всего диапазона устойчивости физически плотного вещества. Уровень собственной мерности водорода, тем не менее, близок к верхней границе устойчивости. Вступает в силу эффект поплавка. Оптимальный уровень мерности водорода находится близко к верхней границе диапазона устойчивости.

Это связано с тем, что водород - легчайший из атомов и его собственное влияние на окружающие пространство минимально. И поэтому потоки первичных материй, которые после завершения процесса синтеза продолжают циркулировать в зоне деформации пространства, "выносят" атомы водорода на тот уровень мерности, при котором их собственное влияние на окружающее пространство уравновешивает воздействие потоков первичных материй. Аналогом может служить уравновешивание плавучести объекта, погружённого под воду его весом, в результате чего, материальный предмет остановится на той глубине, где обе эти силы уравновешивают друг друга. При этом объект как бы зависает на определённой глубине. Так и любой атом будет стремиться к своему оптимальному уровню.

Рис.3.3.7.

Николай Левашов - Неоднородная Вселенная

Рис.3.3.7. Практически все атомы имеют радиоактивные изотопы. Радиоактивные изотопы водорода - дейтерий и тритий - имеют в своих ядрах на один или два нейтрона больше, чем у собственно водорода. Их атомный вес на одну или две атомные единицы отличается от атомного веса водорода и, тем не менее, они являются радиоактивными. В то время, как атомы других элементов, имеющих точно такой и даже больший атомный вес, не проявляют признаков радиоактивности и только их изотопы, имеющие "лишний" нейтрон, проявляют себя, как радиоактивные элементы. Атомы очень многих элементов в своих устойчивых состояниях имеют в своих ядрах нейтроны, порой десятки, и, тем не менее, не становятся радиоактивными. Почему появление ещё одного нейтрона, в дополнение к уже присутствующим, делает подобный атом радиоактивным? Всё дело в том, что лишний нейтрон не меняет оптимального уровня мерности атома в целом, а изменяет степень влияния ядра этого атома, в пределах самого ядра. Поэтому атом с "лишним" нейтроном продолжает вести себя, как и атом без оного и, в результате, становиться радиоактивным.

Рис. 3.3.8.

Николай Левашов - Неоднородная Вселенная

Рис. 3.3.8. Радиоактивный изотоп водорода - дейтерий D - вне зависимости от того, где произошёл его синтез, устремляется к оптимальному уровню собственной мерности обычного водорода H и в результате этого, оказывается в близких к критическим для физически плотного вещества условиях. Пространство постоянно насыщено микроскопическими колебаниями мерности пространства на разных уровнях собственной мерности, в том числе и на уровне оптимальной мерности водорода. В основном, эти микроскопические колебания мерности (фотоны) возникают при переходах электронов с более удалённых от ядра орбит на более близкие к ядру у тех же самых атомов водорода, что "плавают" на уровне своей оптимальной мерности. При поглощении (наложении на атом) этих фотонов атомами дейтерия D, уровень собственной мерности увеличивается и в результате, такой атом оказывается за пределами диапазона устойчивости физически плотного вещества.

1. Нижний уровень мерности физически плотной сферы (Ф.П.С).

2. Верхний уровень мерности Ф.П.С.

Рис. 3.3.9.

Николай Левашов - Неоднородная Вселенная

Рис. 3.3.9. Каждая молекула или атом имеют свой диапазон мерности, в пределах которого, они сохраняют свою устойчивость. Поэтому физически плотная материя планеты распределяется по диапазонам устойчивости. Границы этих диапазонов являются уровнями разделения между атмосферой, океанами и твёрдой поверхностью планеты. Граница устойчивости кристаллической структуры планеты повторяет форму неоднородности, поэтому поверхность твёрдой коры имеет впадины и выступы. Впадины впоследствии заполнились водой и образовали океаны, моря, озёра. Вода, представляющая собой жидкий кристалл и имеющая незначительный уровень собственной мерности, устойчива в верхнем участке диапазона, именно это позволяет ей скапливаться во впадинах коры.

Атмосфера, плавно переходящая в ионосферу (плазменное граничное состояние физически плотного вещества), занимает верхний пограничный участок диапазона мерности физически плотного вещества. После синтеза физически плотного вещества, атомы приобретают некоторую устойчивость к внешним перепадам мерности макрокосмоса. Поэтому только когда амплитуда внешнего перепада мерности станет соизмеримой с половиной диапазона мерности физически плотной сферы, атомы становятся неустойчивыми и распадаются.

Любое изменение мерности макропространства вызванное, в том числе и вспышками солнечной активности, изменение общего уровня мерности макропространства, в силу того, что солнечная система движется относительно ядра нашей галактики, и, как следствие этого, попадает в области с другими уровнями собственной мерности, в силу неоднородности самого пространства, приводит к напряжениям в земной коре. Напряжения в коре приводят к её расколам, опусканию или поднятию её в разных местах, извержению вулканов и появлению новых, как результат изменения условий движения магмы и т.д. Происходит перераспределение физически плотного вещества внутри зоны неоднородности планеты, в соответствии с положением уровней оптимальной мерности для разных агрегатных состояний физически плотной материи: твёрдого, жидкого, газообразного и плазменного.

1. Уровень мерности атмосферы.

2. Уровень мерности океанов.

3. Уровень мерности земной коры.

4. Уровень мерности магмы.

Рис. 3.3.10

Николай Левашов - Неоднородная Вселенная

Рис. 3.3.10 Каждый атом имеет свой собственный уровень мерности и если этот уровень совпадает с уровнем мерности макропространства, где этот атом находится, то он будет находиться в устойчивом состоянии. В противном случае, атом станет неустойчивым и произойдёт его распад. Два атома разных элементов A1 и A2 имеют разные уровни собственной мерности в силу того, что они имеют разный атомный вес и, вследствие этого, по разному влияют на своё микропространство. Поэтому уровни собственной мерности двух атомов разных элементов отличаются друг от друга на некоторую величину ΔL и поэтому не могут в обычных условиях образовать одну систему.

A1 - ядро первого атома.

A2 - ядро второго атома.

LА1 - уровень собственной мерности первого атома.

LА2 - уровень собственной мерности второго атома.

ΔL - перепад между уровнями собственной мерности двух разных атомов.

Рис.3.3.11.

Николай Левашов - Неоднородная Вселенная

Рис.3.3.11. Возможность для атомов, имеющих разные уровни собственной мерности, образовывать молекулы появляется при поглощении или излучении одним из них электромагнитных волн, длина волны которых соизмерима с расстоянием между этими атомами. Данным требованиям отвечают волны из диапазона от инфракрасных до ультрафиолетовых, включительно. При поглощении одним из атомов волны, его уровень собственной мерности увеличивается на величину амплитуды волны. При излучении волны уровень собственной мерности соответственно уменьшается на величину амплитуды излучаемой волны. В результате, собственные уровни разных атомов A1 и A2 выравниваются, и они в состоянии образовать новую молекулу. Весь спектр химических соединений, существующих в природе, включая и органические, существует, благодаря небольшому участку - диазону так называемых электромагнитных волн. Следовательно, появление живой материи невозможно без этих незначительных колебаний мерности микропространства - электромагнитных волн от инфракрасных до ультрафиолетовых.

Рис. 3.3.12.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке