Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы стр 24.

Шрифт
Фон

Конечно, второе решение выглядит более изящно, чем первое. Однако признать его лучшим трудно, поскольку за те простые уравнения, от которых мы отказались, пришлось уплатить некоторым усложнением логики.

А теперь приведем арифметическое решение этой задачи - решение, в котором удается обойтись вообще без составления уравнений.

Так как рабочие совместно выполнили 1 − /6 = /6 всей работы, причем третий сделал ⅓, то на долю первого и второго осталось /6 − ⅓ = ½ всей работы. Следовательно, если бы первый и второй успели выполнить всю работу, то третий за то же самое время сделал бы ⅔; ему останется 1 − ⅔ = ⅓ , на что ему потребовалось бы в силу последнего условия задачи 9 ч.

Так как каждый рабочий сделал одинаковое количество деталей, т. е. ⅓ всей работы, то третий работал ровно 9 ч. Тогда второй работал 9 + 2 = 11 ч. Так как он тоже сделал ⅓ всей работы, то его производительность равна /33 всей работы в час. Мы знаем, что первый и второй тратят на ½ всей работы столько же, сколько третий на ⅓, т. е. 9 ч. Второй сделает за это время 33 · 9 = /11 всей работы. Следовательно, на долю первого приходится ½ − /11 = /22. Его производительность /22 : 9 = /198 в час. Свою треть работы он выполнил за ⅓ : /198 = 13/5 (ч), т. е. за 13 ч 12 мин.

Хотя решение выглядит намного красивее, чем первые два, его тоже трудно назвать существенно лучшим. Взгляните внимательно на уравнения второго решения, и вы заметите, что третье решение получено почти "дословным" пересказом этих уравнений.

Таким образом, на пути к решению задачи вас не должно останавливать большое число неизвестных, которые, по вашему мнению, следует ввести.

Однако старайтесь не вводить неизвестные, размерность которых не встречается в условии и не может быть получена как комбинация элементов условия. Введение таких неизвестных может усложнить задачу.

Вот простой пример.

Пример 2. Расстояние между двумя пунктами A и В пароход проходит по течению реки на а ч быстрее, чем то же расстояние в стоячей воде, и на b ч быстрее, чем против течения (b > а > 0). За какое время пароход проходит расстояние от A до В по течению?

Если ввести в рассмотрение неизвестные: v - скорость парохода в стоячей воде, w - скорость течения реки, x - расстояние, то получим систему двух уравнений с тремя неизвестными:

Сборник задач по математике с решениями...

Найти из этой системы величину /v + w можно, если сделать следующие преобразования:

Сборник задач по математике с решениями...

и обозначить /x = у, /x = z. Мы придем к системе относительно у и z, решив которую, вычислим /y + z.

Однако такую систему можно было получить сразу, если бы мы не ввели в качестве неизвестного x пройденное пароходом расстояние.

В условии задачи не было чисел, выраженных в километрах, однако расстояние между пунктами являлось существенным связующим звеном. Это означает, что мы должны были принять его за единицу, а скорости v и w выражать в частях расстояния, пройденных за один час. В результате мы пришли бы к системе

Сборник задач по математике с решениями...

которую не пришлось бы преобразовывать.

Разберем еще одну задачу, на примере которой видно, как решаются задачи на движение.

Пример 3. Из пункта С в пункт D выехал товарный поезд. Через 5 ч 5 мин навстречу ему из пункта D выехал пассажирский поезд. Они встретились в каком-то пункте А. После этого пассажирский поезд приехал в пункт С через 4 ч 6 мин, а товарный - в пункт D через 12 ч 55 мин. Сколько времени каждый поезд находился в пути?

Условия задачи можно отразить на схеме (рис. 18.1), где буквой В обозначено положение товарного поезда в момент выхода пассажирского из пункта D.

Альберт Рывкин, Евгений Ваховский - Сборник задач по математике с решениями для...

То обстоятельство, что оба поезда находились в точке А одновременно, мы отразим на схеме с помощью вертикального отрезка, связывающего оба пути. Схема подсказывает нам и выбор неизвестных. На путь от В до А товарный поезд потратил столько же времени, сколько пассажирский на путь от пункта D до А. Если обозначить это время через x, то на схеме не останется "белых пятен".

Пусть v1 - скорость товарного поезда, а v2 - скорость пассажирского поезда. Каждый из отрезков пути: от пункта С до А и от пункта D до А позволяет составить уравнения

12/12v1 = хv2, (5/12 + x)v1 = 4/10v2.

Можно составить и уравнение для всего пути:

(5/12 + x + 12/12)v1, = (x + 4/10) v2,

которое является следствием (точнее, суммой) первых двух уравнений. Однако это уравнение проще второго. Поэтому мы будем решать систему

Сборник задач по математике с решениями...

Разделив первое уравнение на второе, получим

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке