
Струнные теоретики сказали бы, что эта струна имеет винтовое число, равное 2, и она еще тяжелее, чем струна, делающая один виток. Но что, если струна намотана вокруг свернутого измерения не один или два раза, а миллиарды раз?

На количество оборотов струны вокруг свернутого измерения пространства нет ограничений. В результате она может сравниться по массе со звездой или даже с галактикой. Но место, которое она занимает в обычном пространстве, то есть в несвернутых размерностях обычного трехмерного пространства, очень мало. Вся эта масса заключена в столь крошечном пространстве, что она гарантированно будет черной дырой.
Сен применил еще одну хитрость, еще один ингредиент теории струн образца 1993 года: извивы, движущиеся вдоль струны. Информация должна была скрываться в особенностях этих извивов, в точности как я описывал это годом ранее.
Извивы на эластичной струне не остаются неподвижными. Они распространяются вдоль струны, подобно волнам: одни по часовой стрелке, а другие против. Два извива, движущиеся в одном направлении, гонятся друг за другом по струне, никогда не сталкиваясь. Однако если две волны движутся в противоположных направлениях, они сталкиваются, порождая сложную мешанину. Поэтому Сен решил хранить всю скрытую информацию в волнах, движущихся "в ногу" по часовой стрелке без всяких столкновений.
Когда все ингредиенты были собраны и различные рукоятки включены, у струны Сена не было других возможностей, кроме как превратиться в черную дыру. Но вместо обычной черной дыры из-за накручивания струны вокруг свернутого измерения появляется совершенно особый тип экстремальной черной дыры.
Экстремальная черная дыра электрически заряжена. Но где же электрический заряд? Ответ был известен уже много лет: накручивание струны на компактизированное измерение придает ей электрический заряд. Каждый оборот струны добавляет одну единицу заряда. Если струна намотана в одном направлении, получается положительный заряд, если в противоположном - отрицательный. Гигантские многократно намотанные струны Сена также могут рассматриваться как сгустки электрического заряда, скрепляемые гравитацией, - иными словами, как заряженная черная дыра.
Площадь - это геометрическое понятие, а геометрия пространства и времени управляется эйнштейновской общей теорией относительности. Единственный способ узнать площадь горизонта черной дыры - это вывести ее из уравнений Эйнштейна для гравитации. Сен мастерски владел этими уравнениями и легко (легко для него) решил их для специального сконструированного им типа черных дыр, а затем вычислил площадь горизонта.
И тут случилась катастрофа! Когда уравнения были решены и площадь горизонта подсчитана, результат оказался равным нулю! Иными словами, вместо замечательной обширной оболочки горизонт сжался до размеров точки пространства. Вся энтропия, запасенная в извивающихся, змеящихся струнах, была, похоже, сконцентрирована в крошечной точке. Это не только было проблемой для черных дыр, но и прямо противоречило голографическому принципу, утверждающему, что максимальная энтропия области пространства равна ее площади в планковских единицах. Где-то была допущена ошибка.
Сен ясно видел, что возникла проблема. Уравнения Эйнштейна классические, то есть они игнорируют эффекты квантовых флуктуаций. Без квантовых флуктуаций электрон в атоме водорода упал бы на ядро, и весь атом стал бы по размеру не больше протона. Но квантовые движения в основном состоянии, вызванные принципом неопределенности, делают атом в 100 000 раз больше ядра. Сен понял, что то же самое может происходить и с горизонтом. Хотя классическая физика предсказывает, что он должен сжиматься в точку, квантовые флуктуации могли бы расширить его до того, что я называю растянутым горизонтом.
Сен внес необходимые поправки: быстрая, "на обороте конверта", оценка показала, что энтропия и площадь растянутого горизонта действительно пропорциональны друг другу. Это был еще один триумф струйной теории энтропии горизонта, но, как и прежде, победа была неполной. Точность вновь ускользнула; оставалась неопределенность относительно того, насколько именно квантовые флуктуации могут растянуть горизонт. Блестящая работа Сена по-прежнему заканчивалась расплывчатой тильдой. Максимум, что он мог сказать, это то, что энтропия черной дыры пропорциональна площади горизонта. Это было почти попадание, но "почти" не считается. "Последний гвоздь в гроб" еще предстояло рассчитать.
Это почти состоявшееся вычисление имело не больше шансов убедить Стивена Хокинга, чем мои аргументы. Тем не менее кольцо смыкалось. Для реализации предложения Вафы и создания экстремальной черной дыры с большим классическим горизонтом требовались новые детали конструктора "Тинкертой". К счастью, их уже готовы были открыть в Санта-Барбаре.
D-браны Полчински
D-браны следовало бы называть Р-бранами - по инициалу Полчински. Но к тому времени, когда Джо открыл свои браны, термин Р-браны уже использовался для совсем другого объекта. Поэтому Джо назвал свои - D-бранами, в честь немецкого математика девятнадцатого века Иоганна Дирихле. Тот, конечно, ничего непосредственно с D-бранами не делал, но его математические исследования волн имели к ним некоторое отношение.
Слово брана не встречается в словарях, кроме как в контексте теории струн. Оно происходит от общеупотребительного термина мембрана, означающего двумерную поверхность, способную изгибаться и растягиваться. Открытие свойств D-бран, сделанное Полчински в 1995 году, было одним из самых важных событий в истории современной физики. Вскоре оно принесло замечательные результаты во всех областях - от черных дыр до ядерной физики.
Простейшая брана - это нульмерный объект, называемый О-браной. Частица или точка пространства нульмерна, по точке невозможно перемещаться, поэтому частица и 0-брана - это синонимы. Сдвинувшись на один уровень, мы получаем 1-браны, которые одномерны. Фундаментальные струны - это частный случай
1-бран. Мембраны - двумерные листы материи - это 2-браны. А что можно сказать о 3-бранах? Они существуют? Представьте себе твердый куб из резины, заполняющий некоторую область пространства. Его можно назвать заполняющей пространство 3-браной.
Может показаться, что мы исчерпали измерения. Очевидно, что нет возможности уложить 4-брану в трехмерное пространство. Но что, если у пространства есть свернутые измерения, шесть штук, например? В этом случае одно из измерений 4-браны может тянуться в свернутом измерении. В действительности если всего cyществует девять измерений пространства, то в нем могут содержаться любые виды бран, вплоть до 9-бран.
D-брана - это не просто любого вида брана. Она имеет совершенно особые свойства, а именно: к ней могут прикрепляться фундаментальные струны. Рассмотрим случай DO-браны. Здесь D означает, что это D-брана, а О указывает, что она нульмерна. Так что DO-браны - это частицы, на которых могут оканчиваться фундаментальные струны.


Dl-браны часто называют D-струнами, потому что они одномерны и сами являются разновидностью струн, хотя их не следует путать с фундаментальными струнами. Обычно D-струны значительно тяжелее фундаментальных струн. D2-бpaны - это мембраны, вроде резиновых листов, но опять же, с тем свойством, что на них могут оканчиваться фундаментальные струны.
Были ли D-браны странной произвольной выдумкой, которую Полчински добавил к теории струи? В его первой исследовательской работе, я думаю, так и могло быть. Физики-теоретики часто изобретают новые концепции просто для того, чтобы поиграть с ними и увидеть, к чему они приводят. На самом деле в 1994 году, когда Джо впервые показал мне идею D-бран, это было как раз в духе такого разговора: "Гляди, мы можем добавить в теорию струн новый объект. Правда, забавно? Давай копнем его свойства".
Но где-то в 1995 году Джо осознал, что D-браны заполняют колоссальную математическую дыру в теории струн. Их существование было в действительности необходимо для завершения растущей паутины логики и математики теории. И D-браны оказались как раз тем недостающим секретным ингредиентом, необходимым для построения экстремальной черной дыры.