Итак, я стал подозревать, что масса длинной запутанной струны тоже может уменьшаться под действием гравитации и не быть пропорциональной длине, если надлежащим образом учесть гравитационные эффекты. Вот мысленный эксперимент, который я вообразил. Предположим, что есть рукоятка, с помощью которой можно плавно усиливать и ослаблять силу гравитации. Поверните рукоятку в сторону уменьшения, и Земля немного расширится, слегка потяжелев. Поверните рукоятку в другую сторону, и Земля сожмется, став при этом немного легче. Поверните еще больше, и гравитация станет еще сильнее. Наконец, она станет настолько сильной, что Земля сколлапсирует и станет черной дырой. Но самое главное, что масса черной дыры окажется значительно меньше первоначальной массы Земли.
С гигантским шаром из струны, который я себе представлял, произошло бы то же самое. Размышляя о связи между шарами из струн и черными дырами, я забыл повернуть рукоятку включения гравитации. Так что однажды вечером от нечего делать - напомню, это было в центральном Нью-Джерси, - я представил себе, что поворачиваю рукоятку гравитации. В воображении я увидел шар из струны, стягивающий сам себя в компактную сжатую сферу. Но еще важнее то, что я понял: новый меньшего размера шар из струны будет также иметь намного меньшую массу, чем первоначальный.
Есть еще один момент. Если размер и масса шара из струны изменятся, не изменится ли при этом энтропия? К счастью, энтропия - это как раз та вещь, которая не меняется при медленном повороте рукоятки. Это, возможно, самый фундаментальный факт относительно энтропии: если вы изменяете систему медленно, ее энергия может меняться (и обычно меняется), но энтропия остается такой же, какой была. Это основание и классической и квантовой механики называется адиабатической теоремой.
Повторим наш мысленный эксперимент, заменив Землю большой запутанной струной. Начнем с того, что установим рукоятку на ноль.

Без гравитации струна не напоминает черную дыру, но обладает энтропией и массой. Теперь медленно повернем рукоятку гравитации. Части струны начинают притягиваться друг к другу, и шар из струны сжимается.

Продолжим поворачивать рукоятку, пока струна не станет настолько компактной, что образует черную дыру.

Гравитация
Масса и размеры сократились, но - и это важный момент - энтропия осталась неизменной. Что случится, если повернуть рукоятку обратно на ноль? Черная дыра начнет надуваться и в конце концов снова превратиться в большой шар из струны. Если медленно поворачивать рукоятку назад и вперед, объект попеременно будет становиться то большим свободным клубком из запутанной струны, то плотно сжатой черной дырой. Но пока мы поворачиваем рукоятку медленно, энтропия остается неизменной.
В момент озарения я понял, что проблема с представлением черной дыры как шара из струны не в том, что энтропия ведет себя неправильно. Это масса нуждалась в корректировке с учетом эффектов гравитации. Когда я выполнил расчеты, занявшие всего один листок бумаги, все встало на свои места. По мере того как шар из струны сжимается и трансформируется в черную дыру, его масса меняется как раз нужным образом. И в итоге энтропия и масса оказываются в правильном соотношении: Энтропия ~ Масса.
Но мои расчеты были обескураживающе неполными. Напомню, что маленький волнистый знак тильды (~) означает "пропорционально", а не "равно". Равна ли в точности энтропия квадрату массы? Или она вдвое больше?
Вырисовывающаяся картина горизонта черной дыры представляла собой запутанную струну, распластанную по горизонту гравитацией. Но те же самые квантовые флуктуации, которые мы с Фейнманом выдумывали в кафе "Уэст Энд" в 1972 году, заставляют некоторые части струны немного выступать, и эти кусочки как раз и могут быть загадочными атомами горизонта. Грубо говоря, кто-то вне черной дыры мог бы заметить кусочки струны, каждый с двумя концами, надежно прикрепленными к горизонту. На языке теории струн атомы горизонта - это открытые струны (струны с концами), прикрепленные к своего рода мембране. В действительности эти кусочки могли бы отрываться от горизонта, и это объяснило бы, как черные дыры излучают и испаряются.

Похоже, что Джон Уилер ошибался: черные дыры покрыты волосами. Кошмар закончился, и я был готов к лекции.
Когда струны пересекаются
Фундаментальные струны могут проходить одна сквозь другую. На следующем рисунке показан такой пример. Представьте себе замкнутую струну, удаляющуюся от вас, и другую, более далекую, движущуюся к вам. В определенной точке они пересекутся, и будь они обычными жгутами от эспандера, они бы зацепились друг за друга.

Но математические правила теории струн позволяют им проходить друг сквозь друга, и в итоге получится такая картинка.

Чтобы проделать такое с настоящими жгутами от эспандера, пришлось бы разрезать один из них, а затем снова соединить после встречи.
Но когда соприкасаются струны, может произойти нечто иное. Вместо того чтобы пройти друг сквозь друга, они могут перестроиться, и тогда получится что-нибудь вроде этого.

Чтобы сделать это со жгутами эспандера, надо их оба разрезать, а потом соединить новым способом.
Какой из двух результатов получится при пересечении струн? Иногда ответ будет один, иногда - другой. Фундаментальные струны - квантовые объекты, а в квантовой механике нет ничего определенного - все варианты возможны, но с определенными вероятностями. Например, струны могут проходить друг сквозь друга в 90 % случаев. А в остальных 10 % случаев они перестраиваются. Вероятность перестраивания называется константой взаимодействия струн.
Зная об этом, давайте присмотримся к короткому кусочку струны, приподнявшемуся над горизонтом черной дыры. Этот короткий сегмент перекручен, и вот-вот с ним случится самопересечение.

В 90 % случаев он проходит сам через себя, и ничего больше с ним не приключается.

Но в 10 % случаев он реорганизуется, и тогда возникает нечто новое: от струны отделяется маленькое кольцо.

Этот небольшой кусочек замкнутой струны является частицей. Он может быть фотоном, гравитоном или любой другой частицей. Поскольку он находится за пределами черной дыры, у него есть шанс ускользнуть, и, когда это происходит, черная дыра теряет немного энергии. Так теория струн объясняет хокинговское излучение.