Однако эффект Доплера приобрел огромную важность для астрономии в 1868 году, когда он был применен к изучению отдельных спектральных линий. За много лет до этого, в 1814–1815 годах, мюнхенский оптик Иозеф Фраунгофер обнаружил, что когда свет от Солнца пропускается через щель, а затем через стеклянную призму, то получающийся цветовой спектр пересекается сотнями темных линий, каждая из которых является изображением щели. (Некоторые из этих линий были замечены еще раньше, в 1802 году, Уильямом Хайдом Волластоном, но не были в то время детально изучены.) Темные линии всегда соответствовали одним и тем же цветам, причем каждая линия отвечала определенной длине волны света. Такие же темные спектральные линии и на тех же местах были найдены Фраунгофером в спектрах Луны и ярчайших звезд. Вскоре стало ясно, что эти темные линии возникают в результате избирательного поглощения света определенных длин волн в то время, когда свет от горячей поверхности звезды проходит через ее более холодную атмосферу. Каждая линия обязана своим происхождением поглощению света определенным химическим элементом, поэтому удалось установить, что элементы, имеющиеся на Солнце, такие, как натрий, железо, магний, кальций и хром, это те же элементы, что и найденные на Земле. Мы знаем сегодня, что длина волны темных линий соответствует энергии фотонов, которая в точности такова, чтобы перевести атом из состояния наименьшей энергии в одно из его возбужденных состояний.
Связь между красным смещением и расстоянием.
Здесь показаны яркие галактики из пяти скоплений галактик, а также их спектры. Спектры галактик представляют собой длинные горизонтальные белые полосы, пересеченные несколькими короткими темными вертикальными линиями. Каждое место вдоль этих спектров соответствует свету от галактики с определенной длиной волны; темные вертикальные линии возникают от поглощения света в атмосферах звезд этих галактик. (Яркие вертикальные линии выше и ниже спектра каждой галактики являются просто стандартными спектрами для сравнения, наложенными на спектр галактики для определения длин волн.) Стрелки ниже каждого спектра указывают на сдвиг двух специфических линий поглощения (Н- и Х-линии кальция) от их нормального положения к правому (красному) концу спектра. Красное смещение этих линий поглощения, если интерпретировать его как эффект Доплера, указывает, что скорость меняется в интервале от 1200 километров в секунду для галактики в скоплении Девы, до 61 000 км/с для скопления Гидры. С учетом того, что красное смещение пропорционально расстоянию, это означает, что указанные галактики находятся на все более далеких расстояниях. (Приведенные здесь расстояния вычислены с помощью постоянной Хаббла, равной 15,3 км/с на миллион световых лет.) Такая интерпретация подтверждается тем, что с ростом красного смещения галактики кажутся все более маленькими и слабыми (фотография Хейльской обсерватории).
В 1868 году сэру Уильяму Хаггинсу удалось показать, что темные линии в спектрах некоторых ярчайших звезд слегка сдвинуты в красную или голубую сторону по сравнению с их нормальным положением в спектре Солнца. Он правильно интерпретировал это как эффект Доплера, связанный с движением звезды от Земли или к Земле. Например, длина волны каждой темной линии в спектре звезды Капелла больше, чем длина волны соответствующей темной линии в спектре Солнца на 0,01 процента; такой сдвиг в красную сторону указывает на то, что Капелла удаляется от нас со скоростью, составляющей 0,01 процента скорости света, т. е. 30 км/с. В последующие десятилетия эффект Доплера был использован для определения скорости солнечных протуберанцев, двойных звезд и колец Сатурна.
Методу измерения скорости путем наблюдения доплеровских сдвигов присуща чрезвычайная точность, так как длины волн спектральных линий могут быть измерены с колоссальной точностью; вполне обычно встретить в таблицах длины волн, приведенные с восемью значащими цифрами. Кроме того, этот метод сохраняет свою точность независимо от расстояния до источника света, если только количества света достаточно для того, чтобы отделить спектральные линии от фона излучения ночного неба.
Именно благодаря использованию эффекта Доплера мы знаем типичные скорости звезд, упомянутые в начале этой главы. Эффект Доплера дает нам также ключ к определению расстояния до ближайших звезд: если мы что-то предположим относительно направления движения звезды, то доплеровский сдвиг даст возможность определить ее скорость как поперек, так и вдоль нашего луча зрения, и тогда изменение кажущегося движения звезды по небосводу позволит узнать, как далеко от нас находится звезда. Но эффект Доплера начал давать результаты, имеющие значение для космологии, лишь тогда, когда астрономы стали изучать спектры объектов, находящихся на значительно большем расстоянии, чем видимые звезды. Я немного расскажу об открытии этих объектов, а затем опять вернусь к эффекту Доплера.
Мы начали эту главу со взгляда на ночное небо. Кроме Луны, планет и звезд на небе есть два других видимых объекта, о которых я должен упомянуть и которые чрезвычайно важны для космологии.
Один из этих объектов так бросается в глаза и так сверкает, что иногда виден даже сквозь дымку ночного неба в городе. Эта полоса огней, протянувшаяся по огромному кругу через всю небесную сферу, с древних пор известна как Млечный путь. В 1750 году английский механик Томас Райт опубликовал примечательную книгу "Теория происхождения или новая гипотеза о Вселенной", в которой он предположил, что все звезды находятся в плоской пластине, "жернове", конечной толщины, но простирающейся на большие расстояния во всех направлениях. Солнечная система лежит внутри пластины, поэтому естественно, что, когда мы смотрим с Земли вдоль плоскости пластины, мы видим значительно больше света, чем когда мы смотрим в любом другом направлении. Именно такую картину мы наблюдаем как Млечный Путь.
Млечный путь в Стрельце.
Млечный Путь в направлении центра нашей Галактики в созвездии Стрельца. Очевидна сплющенность Галактики. Темные области, бегущие через плоскость Млечного Пути, возникают от облаков пыли, которая поглощает свет, находящихся позади нее звезд (фотография Хейльской обсерватории).
Прошло много времени, прежде чем теория Райта подтвердилась. Сейчас считается, что Млечный Путь представляет собой плоский диск из звезд диаметром 80 000 световых лет и толщиной 6 000 световых лет. Он также обладает сферическим звездным ореолом, имеющим диаметр почти 100 000 световых лет. Полная масса обычно оценивается примерно в 100 миллиардов солнечных масс, но некоторые астрономы полагают, что масса окружающего ореола может быть значительно больше. Солнечная система находится на расстоянии около 30 000 световых лет от центра диска и расположена слегка к "северу" от его центральной плоскости. Этот диск вращается со скоростью, достигающей 250 км/с, и имеет гигантские спиральные рукава. В целом, великолепное зрелище, если бы мы могли его видеть снаружи! Вся эта система обычно называется Галактикой или, если смотреть на вещи шире, нашей Галактикой.
Большая галактика М31 в Андромеде.
Это ближайшая к нам большая галактика. Два ярких пятна сверху справа и ниже центра - более маленькие галактики NGC 205 и 221, удерживаемые на орбите гравитационным полем галактики М31. Другие яркие пятна на фотографии - более близкие объекты, звезды внутри нашей собственной Галактики, которые оказались лежащими между Землей и М31. Фотография была сделана с помощью 48-дюймового телескопа на горе Паломар (фотография Хейльской обсерватории).
Другие интересные с точки зрения космологии детали ночного неба видны значительно хуже, чем Млечный Путь. В созвездии Андромеды имеется туманное пятнышко, которое нелегко увидеть, но все же вполне ясно можно различить в хорошую ночь, если только знать, куда надо смотреть. Первое письменное упоминание об этом объекте содержится в списке "Книги неподвижных звезд", составленном в 946 году персидским астрономом Абдурахманом Аль-Суфи. Он описал его как "маленькое облачко". После того как появились телескопы, стали открывать все больше и больше таких удаленных объектов, и астрономы семнадцатого и восемнадцатого веков обнаружили, что они постоянно попадаются на глаза при поисках, казавшихся в то время значительно более интересными, объектов - комет. Чтобы дать удобный список объектов, на которые не надо смотреть, охотясь за кометами, Шарль Мессье опубликовал в 1781 году знаменитый каталог "Туманности и звездные скопления". До сих пор астрономы ссылаются на 103 объекта в этом каталоге по присвоенным им Мессье номерам: так, туманность Андромеды есть М31, Крабовидная туманность - М1 и т. д.