Все вещества, служащие основой для построения живых систем, обладают пространственными особенностями структуры, которые проявляются на всех ступенях развития от атомов до живых организмов, и проявления эти особенно видны в неравноправии правых и левых форм. В основном все живые существа состоят из мезоморфной фазы жидких кристаллов. Внутри этого состояния они находятся между анизотропной и аморфной жидкостью. В свою очередь эти структуры неоднородны и уложены так, что все вместе (палочки, винты, слоистые структуры) образуют двумерную жидкость. Естественным образом энергия таких систем достаточно четко организована и периодически находится в когерентном состоянии. Но Живое вещество это не только жидкие апериодические кристаллы. В его состав входят газы, ионизированные газы, ионы, низкотемпературная плазма, радиоактивные вещества, твердые кристаллы и структурированная вода. Стратегически оно разделено на две неравные половины. Дуализм, так сказать. Если мы спросим физика, что такое диссимметрия, он ответит, что это свойство вещества вращать плоскость поляризации в ту или иную сторону. Математика - объект, не имеющий центра и плоскостей симметрии. Химик отметит принципиальную возможность спонтанного нарушения симметрии и то, что это возможно на уровне монокристаллов. Биология констатирует, что хиральность молекул переходит в зеркально симметричные формы живых существ. Примем за аксиому, что манифестация диссимметрии начинается с разделения сингоний простых веществ. Это те вещества, через которые невозможно провести плоскость симметрии и которые не имеют центра. Этот ответ мы нашли в таблице химических элементов. Кристаллы растут. В процессе роста проявляются свойства диссимметрии или, иначе, понижения симметрии кристалла. Можно увидеть места, где она появляется впервые, а затем манифестирует свое присутствие на видимом уровне. Рассмотрим характерные особенности этого явления. В соответствии с фундаментальным принципом Кюри под внешним воздействием кристалл изменяет свою точечную симметрию так, что сохраняет лишь элементы симметрии, общие с элементами симметрии воздействия, которым в данном случае служит растущая поверхность кристалла. Результирующая точечная симметрия кристалла должна понизиться до точечной симметрии его граней. Часто кристалл образован гранями нескольких типов (октаэдра, куба и ромбододекаэдра, как, например, в кристаллах квасцов). Каждый тип содержит несколько граней. Процесс диссимметризации может идти по-разному для разных граней одного кристалла, и участки кристалла, сформированные одной гранью (пирамиды, или сектора роста), будут обладать различной структурой и симметрией. Таким образом, мы получаем единый монокристалл, симметрия и структура которого различны в отдельных секторах роста. Такое поведение невозможно при обычном термодинамическом фазовом переходе. Различия в строении, составе и свойствах отдельных секторов роста одного кристалла принято называть секториальностью. Теперь вспомним родство граней кристалла с числами. Они всегда четные. Стало быть, диссимметрия - это появление нечетных чисел, а секториальный рост - дроби. При ростовой диссимметризации секториальность наблюдается всегда. Там же мы должны увидеть числа Фибоначчи и золотое сечение. Поэтому апологетам золотого сечения и фибоначчистам следует поискать предмет их любви и в секторальном росте кристаллов. Таким образом, все зависит от того, где растет диссимметрия. Сектора роста, связанные с различными типами граней, обладают неодинаковой кристаллической структурой, а различные сектора роста одного типа граней - структурой схожей, но по-разному ориентированной относительно единой системы координат кристалла. Наиболее легко секториальность можно обнаружить по поведению оптической индикатрисы, каждый радиус-вектор которой пропорционален показателю преломления кристалла в данном направлении. Значения показателей преломления очень чувствительны к небольшим искажениям кристаллической структуры. Возникающие при этом необычные для данного кристалла оптические эффекты принято называть оптическими аномалиями. То есть в пределах одного сектора роста кристалл может обладать различной структурой и, как следствие, различными оптическими свойствами. Это связано с тем, что кристаллы часто растут ступенями. Симметрия плотнейшей упаковки влияет на симметрию всей кристаллической постройки. При этом если кристаллические структуры простых веществ просто наследуют симметрию той или иной плотнейшей упаковки, то в более сложных соединениях наиболее объемные компоненты образуют одну из плотнейших упаковок и, как писал Н. В. Белов, "все разнообразие минерального кристаллического мира сводится к различным способам заселения пустот в ней", что естественно отражается и на симметрии всей постройки. Таким образом, теория плотнейших упаковок шаров одинакового размера оказалась очень продуктивной и удобной при описании построенных по ее законам кристаллических структур и определении их симметрии. При раке сначала образуются кубические "кристаллы" с плотнейшей упаковкой, которые потом "обрастают" тем, что мы, собственно, и называем раком. Для возникновения ростовой диссимметризации необходим твердый раствор, в котором возможно упорядочение замещающих друг друга атомов. В Живом веществе эта основа, как правило, полужидкая, жидкая и твердая. Несмотря на это, диссимметрия в Живом веществе, наряду с поляризацией, является основной ее движущей силой (фактором).
Поэтому, исходя из принципа подобия, можно считать, что диссимметрия присуща как кристаллам, так и Живому веществу, что является лишним доказательством того, что кристаллы дали начало Жизни. Осталась только запрещенная в физике твердого тела пятерная симметрия, присущая только живым существам. Сегодня мы можем сказать, что и этот барьер преодолим. Пятерной осью симметрии обладают квазикристаллы и нанокристаллы. Каждый кристалл обладает определенной симметрией, которая проявляется и в симметрии его физических свойств - электрических, тепловых, оптических. Но иногда мы сталкиваемся с кристаллами, симметрия которых ниже присущей данному соединению. В таких случаях говорят о явлении диссимметризации. Например, если кристалл принадлежит кубической сингоний, то он не должен просветляться между скрещенными поляризаторами. Оптическая индикатриса кубического кристалла - шар. Если же в скрещенных поляризаторах наблюдаются интерференционные окраски, имеет место двойное лучепреломление (двупреломление), оптическая индикатриса представляет собой эллипсоид, и реальная симметрия кристалла ниже. Исследователи, впервые сталкивающиеся с более низкой симметрией хорошо известного им вещества, логично предполагают, что перед ними новая фаза. Термин диссимметризация в таком случае практически не используется. Но иногда мы имеем дело с гораздо более интересным и сложным явлением - понижением симметрии кристалла, не связанным с обычным термодинамическим фазовым переходом, а обусловленным самим процессом роста кристалла. Такой тип диссимметризации называется ростовой диссимметризацией. Именно эта способность кристаллов и предопределила диссимметрию Живого вещества и Жизнь. Явление ростовой диссимметризации возможно только в твердых растворах. Перенесем явление диссимметрии в кристаллах на Живую субстанцию. Благо, прием сравнения подобий нам этого не запрещает.
Живое вещество, как правило, жидкий апериодический кристалл. Поэтому должна прослеживаться логика в появлении, а затем и проникновении диссимметрии в более "мягкие" структуры. На схеме мы видим, как рацемат, соединившись с нанокристаллом, имеющим пентагональную ось симметрии, при дегидратации начинает разделять хиральные молекулы, даже не прикладывая к этому никаких усилий. Необходим только перепад температуры. При даже небольшой разнице температур происходит понижение симметрии, т. е. усиление диссимметрии. Этот момент и можно считать спонтанным нарушением симметрии или отправной точкой Жизни. Потом в этот процесс вмешались геометрические силы, и фолдинг полипептидов организовал клетки-домены, которые сначала засосали ДНК и РНК, а потом сконцентрировали их в центре "ядра". Это и была протоклетка-домен, давшая начало Жизни.