Сергей Вавилов - Глаз и Солнце стр 25.

Шрифт
Фон

Для того чтобы получить любой цвет спектра, вообще говоря, нужны три простых цвета в разных пропорциях. Но эти же три цвета вместе могут создавать и окраски, которых в спектре нет, например белую и пурпуровую. Если подмешивать к простому цвету, положим красному, белый, то окраска остается красной, но она становится все более и более разбавленной, уменьшается ее насыщенность. Следовательно, из одного простого красного цвета можно получить бесконечное разнообразие красных цветов в разной насыщенности – от чисто красного до белого. Вообще любая окраска для глаза характеризуется тремя признаками: яркостью, цветностью и насыщенностью. Таким образом, разнообразие окрасок, видимых человеком, бесконечно больше, чем число цветов видимого спектра. Глаз с этой точки зрения – очень мало пригодный прибор для спектрального анализа света.

В военном деле для маскировки орудий, окопов и пр. от глаз неприятеля применяется окраска под цвет почвы, травы и т. д. Несмотря на значительную спектральную разницу света, отраженного от маскированного предмета и окружающего фона, человеческий глаз легко может быть введен в заблуждение; только спектроскоп в состоянии вскрыть обман. В животном мире маскировка, приспособление животного под цвет местности, чрезвычайно распространена; многие насекомые имеют зеленый цвет листьев и травы, зайцы меняют шерсть, приспособляясь зимой к белому снежному покрову, а летом к бурому тону почвы и т. д. Весьма значительно, что очень часто цвет маскированного животного не только на взгляд, для глаза, имеет окраску окружающего, но совпадает с нею и по спектральному составу. Эта совершенная защита заставляет подозревать, что, может быть, качества глаз некоторых животных, врагов тех, которые маскируются от их взгляда, несколько совершеннее, чем у человека.

Несовершенство глаза как спектроскопа вполне понятно. Физику удается разложить сложный свет на простой только пространственным разделением входящих в него простых лучей путем применения призм и других приборов. Оценить спектральный состав без пространственного разделения лучей можно только очень грубо, по особенным действиям отдельных спектральных участков на вещество. Например, красные лучи на фотографическую пластинку действуют слабо, синие сильно. Приходится поистине поражаться тому, что каждый простой цвет вызывает в глазе свое особенное действие, независимо от энергии, хотя никакого пространственного распределения лучей нет. В наших искусственных приборах всегда можно имитировать действие одних лучей действием других, подобрав энергию, если только исследуются непрерывные спектры. Как достигается такое высокое совершенство в сетчатке глаза, мы достоверно до сих пор не знаем. Предполагается, что в сетчатке имеется три различных вида светочувствительных элементов, каждый со своей особенной широкой полосой возбуждения (рис. 38). Если, например, падает красный цвет, то затрагиваются все три элемента, все они поглощают красный цвет, но в разной степени. Глаз чувствует эту разницу, что и сопровождается ощущением красного цвета. Зеленый цвет также возбуждает все три элемента, но в иных отношениях, чем красный, и т. д. Ощущение суммы возбуждений во всех трех элементах соответствует яркости падающего света, а ощущение отношений возбуждений в трех разных элементах – ощущению цвета. Если бы остался только один элемент, то об отношениях не имело бы смысла говорить, не было бы ощущения цвета, хотя впечатление яркости оставалось бы по-прежнему. Такое представление хорошо объясняет возможность сложения любого цвета из трех других, случаи цветовой слепоты (дальтонизм и др.), когда глаз теряет ощущение цветности в некоторых участках спектра, и т. д. Но до сих пор эта теория не получила безукоризненного анатомического подтверждения.

Сергей Вавилов - Глаз и Солнце

Рис. 38

Кривые трех "основных возбуждений" По оси ординат – чувствительность в относительных единицах

Обладание цветовым зрением необычайно повышает ценность зрительных восприятий. Цветовое зрение дает возможность очень быстро и по-новому различать предметы. Представим себе, что цветовых восприятий нет, что мы судим о различии предметов, как по обычной фотографии, только по количеству рассеиваемого света. При этом две поверхности, например желтая и зеленая, фотометрически равные, казались бы не различимыми, картина окружающего мира сразу обеднела бы подробностями. Кроме того, цветовые различия воспринимаются чрезвычайно быстро, в то время как для установления небольших отличий в яркости (тем более отдаленных друг от друга предметов) требуется длительное время и даже количественные измерения. Мы не говорим уже о чисто художественном элементе цветового восприятия.

Ввиду этих громадных преимуществ цветового восприятия очень полезно перенести цветность даже в такие области, где она, казалось бы, исключена по самому существу, например при изучении предметов в невидимых ультрафиолетовых или инфракрасных лучах. Между тем это вполне возможно, как это в микроскопии показал Е. М. Брумберг.

Предположим, что мы фотографируем под микроскопом некоторый препарат в ультрафиолетовых лучах. Сделаем три снимка в различных трех волнах, позаботившись о том, чтобы все они были одинакового масштаба. Фотографии, полученные в трех ультрафиолетовых волнах, будут вообще разные, так как различные волны поглощаются сильнее или слабее. Поступим теперь с тремя полученными "черными" фотографиями точно так же, как при цветном фотографировании. Спроецируем их через различные цветные стекла, например красное, зеленое и фиолетовое, при помощи фонарей на один и тот же экран и совместим три изображения. Мы получим цветную фотографию от объекта, снятого в невидимых лучах. Конечно, в данном случае – это искусственная фотография. Можно пользоваться различными цветными стеклами и получать различные цветные фотографии. Такие искусственные цветные фотографии с объектов, снятых в невидимых лучах, имеют очень большие практические преимущества. Они позволяют быстро открывать в предмете детали, оставшиеся ранее скрытыми, и производить качественный химический анализ.

Разумеется, тот же метод можно из области микроскопии перенести на все виды фотографирования в невидимых лучах. Экспериментатор при этом правильно подражает природе, в которой существует этот удивительный способ зрительных восприятий.

Наши довольно путаные странствования по различным областям знания подошли к концу. При помощи главным образом физики, астрономии и биологии мы наконец начали понимать истинный характер неоспоримого родства глаза и Солнца.

Эта связь почти такая же, как между фотографическим аппаратом и источником света, в лучах которого производится съемка. Конечно, в большинстве случаев снимают не источник света, а освещаемый им предмет, но предмет можно снять только потому, что он рассеивает лучи источника, и потому аппарат должен быть приспособлен к этим лучам. Его объектив должен их пропускать и давать в этих лучах правильное изображение, фотографическая пластинка должна обладать хорошей чувствительностью в нужной области спектра, в аппарате неизбежна диафрагма, позволяющая приспособляться к разным условиям освещения. В зависимости от величины освещенности нужно пользоваться пластинками разной чувствительности. Всем этим обладает глаз, приспособившийся к Солнцу как источнику света. Хрусталик глаза пропускает лучи Солнца, не вредные для организма, к сетчатке и дает в солнечных волнах хорошее изображение. Сетчатка глаза весьма чувствительна, но для дневных условий эта чувствительность очень сильно искусственно понижается, а для ночных снова возрастает. Глаз располагает диафрагмой, автоматически (в зависимости от освещенности) меняющейся в широких пределах. Спектральная чувствительность глаза попадает в максимум спектральной кривой энергии Солнца.

Все это результат приспособления глаза к солнечному свету на Земле.

Глаз нельзя понять, не зная Солнца. Наоборот, по свойствам Солнца можно в общих чертах теоретически наметить особенности глаза, какими они должны быть, не зная их наперед.

Вот почему глаз – солнечен, по словам поэта.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3