Владимир Лелевич - Биологическая химия стр 28.

Шрифт
Фон

Гипофункция паращитовидных желез (гипопаратиреоз)

Основной симптом гипопаратиреоза, обусловленный недостаточностью паращитовидных желез, – гипокальцемия. В результате этого повышается нервно-мышечная возбудимость, что проявляется приступами тонических судорог, спазмофилией (судороги дыхательных мышц). Могут возникать неврологические нарушения и нарушения сердечно-сосудистой системы.

Кальцитонин – полипептид, состоящий из 32 аминокислотных остатка. Синтезируется в парафолликулярных клетках щитовидной железы или в клетках паращитовидных желез. Секреция кальцитонина возрастает при увеличении концентрации Са и уменьшается при понижении концентрации Са в крови.

Кальцитонин – антагонист паратгормона. Органы-мишени: кости, почки, кишечник.

Эффекты кальцитонина:

1. ингибирует высвобождение Са из кости, снижая активность остеокластов;

2. способствует поступлению фосфата в клетки костей;

3. стимулирует экскрецию Са почками с мочой.

Скорость секреции кальцитонина у женщин зависит от уровня эстрогенов. При недостатке эстрогенов секреция кальцитонина снижается, что приводит к развитию остеопороза.

Кальцитриол (1,25-дигидроксихолекальциферол) – стероидный гормон, синтезируется в почках из малоактивного предшественника 25-гидроксихолекальциферола. Органы-мишени: кишечник, кости, почки.

Эффекты кальцитриола:

1. способствует всасыванию Са в кишечнике, стимулируя синтез кальцийсвязывающего белка;

2. в костях стимулирует разрушение старых клеток остеокластами и активирует захват Са молодыми костными клетками;

3. увеличивает реабсорбцию Са и Р в почках.

Конечный эффект – повышение уровня Са в крови.

Гормоны надпочечников

Гормоны мозгового вещества надпочечников

В мозговом веществе надпочечников в хромаффинных клетках синтезируются катехоламины – дофамин, адреналин и норадреналин. Непосредственным предшественником катехоламинов является тирозин. Норадреналин образуется также в нервных окончаниях симпатической нервной ткани (80% от общего количества). Катехоламины запасаются в гранулах клеток мозгового слоя надпочечников. Повышенная секреция адреналина происходит при стрессе и понижении концентрации глюкозы в крови.

Адреналин является преимущественно гормоном, норадреналин и дофамин – медиаторами симпатического звена вегетативной нервной системы.

Биологическое действие

Биологические эффекты адреналина и норадреналина затрагивают практически все функции организма и заключаются в стимуляции процессов, необходимых для противостояния организма чрезвычайным ситуациям. Адреналин выделяется из клеток мозгового вещества надпочечников в ответ на сигналы нервной системы, идущие из мозга при возникновении экстремальных ситуаций (например, борьба или бегство), требующих активной мышечной деятельности. Он должен мгновенно обеспечить мышцы и мозг источником энергии. Органы-мишени – мышцы, печень, жировая ткань и сердечно-сосудистая система.

В клетках-мишенях имеется два типа рецепторов, от которых зависит эффект адреналина. Связывание адреналина с β-адренорецепторами активирует аденилатциклазу и вызывает изменения в обмене, характерные для цАМФ. Связывание гормона с α-адренорецепторами стимулирует гуанилатциклазный путь передачи сигнала.

В печени адреналин активирует распад гликогена, в результате чего резко повышается концентрация глюкозы в крови (гипергликемический эффект). Глюкоза используется тканями (в основном мозгом и мышцами) в качестве источника энергии.

В мышцах адреналин стимулирует мобилизацию гликогена с образованием глюкозо-6-фосфата и распад глюкозо-6-фосфата до молочной кислоты с образованием АТФ.

В жировой ткани гормон стимулирует мобилизацию ТАГ. В крови повышается концентрация свободных жирных кислот, холестерола и фосфолипидов. Для мышц, сердца, почек, печени жирные кислоты являются важным источником энергии.

Таким образом, адреналин оказывает катаболическое действие.

Адреналин действует на сердечно-сосудистую систему, повышая силу и частоту сердечных сокращений, артериальное давление, расширяя мелкие артериолы.

Гиперфункция мозгового вещества надпочечников

Основная патология – феохромоцитома, опухоль, образованная хромаффинными клетками и продуцирующая катехоламины. Клинически феохромоцитома проявляется повторяющимися приступами головной боли, сердцебиения, повышенного артериального давления.

Характерные изменения метаболизма:

1. содержание адреналина в крови может превышать норму в 500 раз;

2. возрастает концентрация глюкозы и жирных кислот в крови;

3. в моче определяется глюкоза, адреналин.

Гормоны коры надпочечников (кортикостероиды)

В коре надпочечников синтезируются более 40 различных стероидов, различающихся по структуре и биологической активности.

Биологически активные кортикостероиды объединяются в 3 основные класса:

1. глюкокортикоиды, оказывающие влияние на обмен углеводов, жиров, белков и нуклеиновых кислот;

2. минералокортикоиды, оказывающие влияние на водно-минеральный обмен;

3. половые гормоны (андрогены и эстрогены).

Глюкокортикоиды

Надпочечники человека скретируют глюкокортикоиды: кортизол (гидрокортизон), кортизон и кортикостерон.

Ткани-мишени: печень, почки, лимфоидная, соединительная и жировая ткани, мышцы.

Секреция глюкокортикоидов находится под контролем АКТГ. Скорость синтеза и секреции гормонов стимулируются в ответ на стресс, травму, инфекцию, понижение уровня глюкозы в крови.

Биологическое действие

Влияние глюкокортикоидов на метаболизм связано с их способностью координированно воздействовать на разные ткани и разные процессы как анаболические (в печени), так и катаболические (в других тканях-мишенях).

Влияние на углеводный обмен:

1. в печени стимулируют синтез гликогена и глюконеогенез (синтез глюкозы из аминокислот);

2. в почках стимулируют глюконеогенез;

3. в периферических тканях тормозят потребление глюкозы и гликолиз.

Влияние на обмен липидов:

1. активируют синтез триацилглицеролов в печени;

2. стимулируют распад жира на конечностях и отложение жира в других частях тела (лицо, туловище). При избытке глюкокортикоидов развивается "паукообразное" ожирение;

3. образующийся при распаде жира глицерол используется в глюконеогенезе, а жирные кислоты – для синтеза кетоновых тел.

Влияние на обмен белков и нуклеиновых кислот:

1. в печени глюкокортикоиды стимулируют синтез белков и нуклеиновых кислот;

2. в мышцах, лимфоидной и жировой ткани, коже и костях тормозят синтез белков, РНК и ДНК, стимулируют распад РНК и белков.

При высокой концентрации глюкокортикоиды оказывают следующие эффекты:

1. в лимфоидной ткани подавляют иммунные реакции, вызывая гибель лимфоцитов и инволюцию лимфоидной ткани;

2. уменьшают состояние сенсибилизации (повышенной чувствительности) к чужеродным веществам, препятствуют развитию последующих аллергических реакций;

3. подавляют воспалительную реакцию, уменьшая число лейкоцитов и снижая синтез медиаторов воспаления (простагландинов и лейкотриенов);

4. вызывают торможение роста и деления фибробластов, синтеза коллагена в соединительной ткани.

Глюкокортикоиды участвуют в физиологическом ответе на стресс, связанный с травмой, инфекцией или хирургическим вмешательством. В этом ответе в первую очередь участвуют катехоламины, и для проявления их максимальной активности необходимо участие глюкокортикоидов.

Минералокортикоиды

Альдостерон – наиболее активный минералокортикоид. Синтез и секреция альдостерона клетками клубочковой зоны надпочечников стимулируются низкой концентрацией Na и высокой концентрацией К в плазме крови. На секрецию альдостерона влияют АКТГ и ренин-ангиотензиновая система.

Ткани-мишени: клетки эпителия дистальных канальцев почек, потовые и слюнные железы.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке