Я предполагаю, что по мере прогресса экспериментов по искусственному одичанию животные постепенно будут становиться все более и более похожими на туров своим внешним видом и поведением. Но может оказаться, что некоторые особенности туров нельзя будет восстановить из генов современных пород крупного рогатого скота. Например, последовательность ДНК, кодировавшая конкретную особенность, может быть утеряна или какой-то признак может оказаться следствием взаимодействия генов с окружающей средой, которой более не существует. Кто-то (например, я) скажет, что это неважно и что если мы хотя бы частично заполним природную нишу, которую когда-то занимал тур, эксперимент можно будет считать успешным. Однако пуристы от науки восстановления вымерших видов никогда не удовлетворятся таким результатом, поскольку он всегда будет чем-то новым , а не чем-то старым. Тур, версия 2.0, не будет настоящим туром. Во всяком случае, не в полной мере.
Разве проще – это непременно лучше?
Одно из преимуществ искусственного одичания заключается в том, что оно практически не опирается на молекулярные биотехнологии. Нам не нужно секвенировать геномы, идентифицировать гены и сопоставлять разные версии генов со специфическими признаками особи. Постепенный переход от одной формы жизни к другой происходит без участия эмбриональных стволовых клеток и долгих часов, проведенных в лаборатории. Результаты работы оцениваются качественно: выглядит животное чуть более похожим на тура или нет?
Но простота искусственного одичания может также быть его недостатком. Такие черты, как темный окрас шкуры, длинные рога, направленные вперед, или выраженная мускулатура шеи и плечевого пояса, могут появиться в популяции через несколько поколений селективного отбора, но кодирующие их гены могут отличаться от генов, кодировавших те же признаки у представителей вымершего вида.
Имеет ли это вообще значение? Если мы хотим получить длинные рога, направленные вперед, и у быка на самом деле вырастают такие рога, действительно ли так важно, какие именно гены за это отвечают? Да, может быть важно. Гены не всегда, и даже не часто, имеют только одну функцию. Ген, отвечающий за изгиб рогов, может иметь другое, нежелательное влияние на фенотип быка. Например, слегка изменить его форму черепа или как-то повлиять на форму или структуру его копыт. Вдобавок гены действуют не изолированно, но сообща с другими генами, также экспрессированными в клетке.
Пример взаимодействия генов, который приводят во вводном курсе биологии, – то, как определяется масть у лошадей. Лошади имеют один ген, отвечающий за то, будет их шкура иметь рыжий или черный цвет. Доминантный аллель кодирует черный окрас, а рецессивный – рыжий. Если бы этот ген работал в одиночку, особи, имеющие либо две копии доминантного аллеля, либо один доминантный и один рецессивный, имели бы черную шкуру, а те, у которых присутствовало бы два рецессивных гена, имели бы рыжий окрас. Однако существует множество вариантов рыжих и рыжеватых лошадей. Это происходит благодаря действию еще одного разбавляющего гена, который модифицирует экспрессию рыжих аллелей. Лошадь, имеющая две копии рецессивного рыжего аллеля, может иметь каштановую масть, может быть пегой с белой гривой и даже белой или кремовой, в зависимости от того, сколько копий гена, разбавляющего цвет, она имеет.
Хотя нам известны не все взаимодействия генов и очень малое их количество мы хорошо понимаем, это не означает, что селекция животных с определенными признаками невозможна. Спустя множество поколений селекции, с использованием различных комбинаций различных особей или различных пород, правильная комбинация генов или, по меньшей мере, комбинация, дающая нам нужные фенотипы, может быть найдена. Сколько времени на это понадобится, зависит от ряда факторов, включая то, как много признаков мы хотим получить в результате, насколько легко будут скрещиваться животные и сколько времени понадобится на переход от одного поколения к следующему.
Слишком медленно, чтобы добиться успеха?
Время жизни одного поколения крупного рогатого скота значительно меньше, чем у других видов. Самки могут начать размножаться в возрасте 1–2 лет, а срок беременности у них составляет 9 месяцев. Отобранная методом селекции особь может родиться, достичь зрелости, забеременеть и произвести на свет следующее поколение в течение 2–3 лет. Можно представить, как будет прогрессировать программа по одичанию крупного рогатого скота, – пусть и не с головокружительной скоростью, но довольно быстро.
В случае многих других кандидатов на возрождение прогресс будет происходить намного, намного медленнее. К примеру, самец слона начинает вырабатывать сперму в возрасте 10–15 лет, а самки слона в дикой природе впервые беременеют примерно в 12 лет. Срок беременности у слонов составляет от 20 до 22 месяцев. Это означает, что нам придется подождать 14 лет от момента, когда появится первое поколение, отобранное методом селекции, до момента, когда оно сможет произвести на свет следующее поколение. При такой скорости за срок человеческой жизни можно получить только пять поколений. Должен существовать лучший путь.
Разумеется, он есть. Простой способ быстрее получить нужный признак – убедиться, что им обладает каждая особь в следующем поколении. В случае скрещивания с целью получить особенности, характерные для диких животных, это не работает, поскольку потомство от двух родителей может унаследовать или не унаследовать целевой признак или признаки. Однако новые технологии (в частности, имеющие отношение к геномной инженерии), которые лежат в основе второго доступного нам (и более магического) способа возрождения вымерших видов, позволяют нам редактировать геном напрямую. Изменив последовательность ДНК внутри клетки, а затем использовав эту клетку для создания живых организмов, мы с гарантией получим целевой признак в следующем поколении. Мы можем сильно ускорить и сделать более эффективным весь процесс воскрешения исчезнувших признаков у живых видов.
К примеру, мы знаем, что гемоглобин (белок красных кровяных телец, который захватывает кислород в легких, а затем распространяет его по кровеносной системе всего остального организма) у мамонтов отличался от гемоглобина слонов в точности четырьмя мутациями. Эти четыре различия модифицируют поведение гемоглобина, заставляя мамонтовую версию при очень низкой температуре тела более эффективно доставлять кислород в ткани, чем это происходит у слонов (представьте себе ногу мамонта, погруженную в снег).
Нам не удастся найти живого слона с мамонтовой версией генов, кодирующих гемоглобин. Общий предок мамонтов и современных слонов жил в тропиках, а адаптации к жизни в холодном климате развились у мамонтов только после того, как их линия отделилась от линии индийских слонов. Поскольку все мамонты вымерли, у нас нет ни одной живой особи, обладающей этими конкретными генами. Чтобы получить слона, организм которого будет вырабатывать мамонтовый гемоглобин, нам понадобится с нуля создать мамонтовую версию этих генов, а затем каким-то образом вставить ее в клетку слона. Мы способны сделать это.
Глава 6. Воссоздадим геном
В 2010 году Джон Крейг Вентер создал жизнь с нуля. Он и его группа синтезировали полный геном крошечной свободноживущей бактерии, которую они назвали Mycoplasma mycoides JCVI-syn1.0, и перенесли его в клетку-реципиент, из которой предварительно удалили ее собственный геном. Ученые не только соединили вместе все фрагменты, необходимые, чтобы геном функционировал (что он и делал), а клетка размножалась (что она и делала), но и внесли в него своеобразный "водяной знак" – переведенные в генетический код имена исследователей, участвовавших в проекте, чтобы этот синтетический геном можно было отличить от настоящего, на котором он был основан.
Процесс создания жизни Вентер и его группа начали с изучения полной геномной последовательности бактерии Mycoplasma mycoides. Этот оцифрованный геном, представляющий собой не более чем строчки текста, хранящиеся в файле на жестком диске компьютера, стал макетом созданной ими жизни. Они выбрали именно этот бактериальный геном из-за его небольшой длины – немногим более миллиона пар оснований, а также из-за быстрого роста бактерий, которое ускорило эксперимент.
Миллион спаренных оснований – это очень короткий геном, даже для бактерии. Однако недостаточно короткий, чтобы его можно было синтезировать целиком за один раз. При создании цепочек ДНК в лаборатории машины делают это, соединяя в определенном порядке отдельные азотистые основания – А, Г, Ц и Т, из которых образуются целые геномы. Чем длиннее фрагмент, тем больше ошибок будет сделано в процессе синтеза. Если ученые хотят, чтобы бактерия могла выживать и размножаться, искусственный геном должен соответствовать своему макету максимально близко.