Наше приключение началось в сибирском доме Бернара в Хатанге. Хатанга – необычное место. Это одна из самых северных точек в мире, где живут люди. Хотя население города составляет менее 3,5 тысячи человек, там есть аэропорт, гостиница и музей природы и этнографии, полный экспонатов, связанных с людьми, живущими в этой местности, и ее историей. В Хатанге также есть несколько ресторанов, где подают мясо местных животных, приправленное укропом, и несколько маленьких магазинчиков, где продается морковь с признаками обморожения по цене 8 долларов, полуавтоматические пулеметы и причудливое разнообразие ароматизированной жевательной резинки. Дороги и речные берега усыпаны незнакомыми механизмами, некоторые из них, возможно, все еще работают. Люди там живут где угодно – и в маленьких деревянных хижинах, и в больших многоквартирных домах и даже транспортных контейнерах – тех, которые используются на судах-контейнеровозах для перевозки грузов через океан. Даже дом Бернара частично состоял из транспортных контейнеров, соединенных вместе и, предположительно, хорошо изолированных от внешней среды. В конце концов, город располагается на 71 градусе северной широты, и зимы в Хатанге темные и холодные, со среднемесячной минимальной температурой около –35 ˚C и полным отсутствием солнечного света в течение многих дней в декабре и январе. Правда, мы находились там с июля по август, и температура воздуха колебалась в приемлемых пределах 5–15 ˚C, а солнце светило круглые сутки. Разумеется, вокруг кружило несколько комаров, портя в остальном прекрасную атмосферу. Точнее, несколько сотен комаров.
На кубический сантиметр воздуха.
В нашей экспедиции участвовали Бернар, его жена Сильвия и их двадцатилетний племянник Питу, несколько русских, работавших на Бернара, французская женщина-режиссер и ее бойфренд, а также целое собрание ученых с самыми разнообразными интересами, касающимися животных ледникового периода. Самым старшим ученым в нашей группе был Дэн Фишер, специалист по изучению мамонтов и профессор Мичиганского университета. Дэн – мировой эксперт в своей области: исследуя паттерны роста мамонтовых бивней, он может определить пол, репродуктивную историю, образ жизни и даже причины смерти животного. Дэн тоже измеряет количество стабильных изотопов химических элементов, углерода и азота, накапливавшихся в бивне мамонта по мере его роста. Эти изотопы образуют почти непрерывную запись изменений в рационе мамонта и в окружавшей его среде. С нами также работали Адам Раунтри и Дэвид Фокс, ранее обучавшиеся под руководством Дэна. Наконец, среди нас было двое исследователей, интересующихся ДНК: я и Иэн Барнс, который в то время преподавал в колледже Ройял-Холлоуэй в Лондонском университете, но я познакомилась с ним во времена, когда трудилась над своей диссертацией в Оксфордском университете.
Дэн, Дэвид и Адам мечтали найти бивни, мы же с Иэном надеялись на кости мамонтов. Бивни лучше подходят для изотопного анализа, но в них содержится очень мало ДНК. Нас с Иэном, кроме того, интересовали все животные, обитавшие на Таймыре в периоды оледенения, так что мы не были строго сосредоточены на сборе мамонтовых костей.
По причинам, оставшимся для меня загадкой, и несмотря на обещания, данные Бернару еще до нашего прибытия в Хатангу, вертолета нам пришлось ждать целую неделю. Мы временно поселились у Бернара и, чтобы убить время, занялись исследованием Хатанги. Мы примерили на себя множество теплых курток и противомоскитных приспособлений. Мы бродили по улицам, дразня местных собак и пытаясь разгадать предназначение разнообразных механизмов. Мы устанавливали ловушки для насекомых и определяли виды тех, которые туда попались. Мы просверлили отверстия в нескольких костях из коллекции Бернара для нашей съемочной группы и на благо будущих исследовательских проектов. Пока мы ожидали, Бернар организовывал и был вовлечен в одну за другой встречи с его группой российских ученых и специалистов по логистике. Эти собрания были яркими и волнующими: гигантские карты не помещались на столах, разговоры переходили на повышенный тон, проводились сверки со старыми научными документами, описывающими географические пределы прошлых оледенений, водка лилась в стаканы и строился план будущей экскурсии.
Наконец, вертолет прибыл и настала пора вылетать в поле. Мы собрали еду, горючее и вещи и отправились из дома Бернара прямо в аэропорт. Мы пробрались через контроль безопасности на взлетную полосу и встретились лицом к лицу со своим следующим транспортным средством: всеми любимым вертолетом Ми-8. Около четверти пространства в нем уже занимали два огромных газовых баллона. Пробираясь мимо баллонов, мы забросили внутрь свое походное снаряжение, камеры и осветительные приборы для съемок, две большие надувные лодки и два подвесных мотора мощностью в 250 лошадиных сил каждый, запасы риса и неизвестной сублимированной еды, достаточные, чтобы прокормить двадцать человек в течение шести недель, гигантскую канистру бензина для готовки и водку в объеме, достаточном, чтобы ощущать счастье в течение по меньшей мере суток. В вертолете Ми-8 недоставало около трети окон, предположительно, чтобы на борту было удобнее курить.
Загрузив все свои вещи, мы забрались внутрь и устроились на лавках под окнами, а также сверху на вещах и баллонах с газом. Последним на борт поднялся Паша, пес нашего повара, годовалый сибирский хаски. Паша выражал свои опасения по поводу участия в нашей экспедиции, пытаясь слиться с покрытием взлетной полосы под трапом. Я разделяла Пашины сомнения относительно того, что лучше: быть проглоченным взлетно-посадочной полосой или подняться в небо на Ми-8. Когда стало ясно, что полоса не желает поглощать Пашу, он сбежал. Повар и один из пилотов выбрались наружу, выкурили несколько сигарет, поймали Пашу, подняли его на руках примерно до середины трапа, каким-то образом умудрились упустить его, поймали снова, усмирили в достаточной степени, чтобы дотащить до конца трапа и внести в дверь, и, наконец, мы устроились в кабине. Под радостные возгласы и отчаянный вой Паши мы оторвались от земли и полетели в сторону тундры.
Соматический ядерный перенос
Если в коллекциях по всему миру уже накоплено такое множество костей, зачем нам выбираться в поле, чтобы найти еще какие-то? Зачем иметь дело со сломанными вертолетами, золотыми рудниками, двадцатичетырехчасовым световым днем и тучами комаров? Ответ прост: лучшие кости – те, которые попали к нам прямиком из обледеневшей тундры. Мы хотим найти кости, которые ни разу не оттаивали. В них содержатся наилучшим образом сохранившиеся клетки с наилучшим образом сохранившейся ДНК.
Мы – не единственная группа ученых, проводящая свое лето в Арктике в поисках останков животных ледникового периода или болтающаяся по золотым приискам, но мне приятно думать, что у нас самый здравый подход к делу. К примеру, мы знаем, что не ищем клетки, которые можно будет клонировать. Все, что известно ученым о клонировании животных с использованием соматических клеток (то есть не являющихся ни сперматозоидами, ни яйцеклетками), говорит о том, что клонирование сработает только в том случае, если клетка содержит неповрежденный геном. Ни одной такой клетки не было обнаружено в останках вымерших животных, найденных во льдах тундры.
Разрушение ДНК начинается сразу же после смерти организма. Растительные и животные клетки содержат ферменты, задача которых – разрывать связи внутри молекулы ДНК. Эти ферменты, называемые нуклеазами , обнаруживаются в клетках, слезной жидкости, слюне, поте и даже на кончиках наших пальцев. Пока мы живем, нуклеазы критически важны для нас. Они уничтожают проникающие в наш организм патогенные микробы до того, как они причинят нам какой-либо вред. Они устраняют поврежденную ДНК, позволяя нашим клеткам починить то, что было сломано. А после смерти наших клеток нуклеазы разрушают их ДНК, так что нашему организму проще избавиться от них. Другими словами, нуклеазы эволюционировали таким образом, чтобы оставаться активными и после того, как клетка гибнет, и это плохие новости для тех, кто хочет клонировать мамонта.
В лаборатории мы не даем нуклеазам разрушать ДНК, которую мы пытаемся выделить, либо погружая свежий образец в раствор химических ингибиторов, либо подвергая его быстрой заморозке. Арктика – холодное место, но недостаточно холодное, чтобы заморозить что-то (особенно такое большое, как мамонт) достаточно быстро, чтобы защитить ДНК от распада. Вдобавок нуклеазы вырабатываются всеми живыми организмами, включая бактерии и грибы, которые колонизируют разлагающиеся тела мертвых животных. Следовательно, шанс, что геномы каких-либо клеток могут сохраниться совершенно нетронутыми в течение длительного времени после смерти, невелик. Без неповрежденного генома клонировать мамонта не получится. Точнее, не получится клонировать мамонта путем соматического ядерного переноса.
Соматический ядерный перенос – это унылое, но вполне подходящее название для процесса, благодаря которому у нас появился, в частности, самый известный клон – овечка Долли (рис. 8). Долли клонировали ученые из Рослинского института в Шотландии в 1996 году. Ученые удалили ядро – часть клетки, содержащую геном, из клетки молочной железы, взятой у взрослой овцы, и поместили это ядро в подготовленную яйцеклетку другой взрослой овцы. Затем эта яйцеклетка развилась в матке еще одной взрослой самки в совершенно здоровую особь своего вида. Важно отметить, что овца, клонированная путем ядерного переноса, была генетически идентична животному, ставшему донором клетки молочной железы, и не имела ничего общего со своей суррогатной матерью или той овцой, у которой взяли яйцеклетку.