
Больше 100 лет назад немецкий исследователь Эрнст Вебер решил узнать, какую минимальную дозу добавочного раздражителя способны уловить наши чувства. Он взял в каждую руку сначала по одинаковому грузу. Потом понемножку увеличивал его в одной руке, пока не почувствовал, что груз в ней стал тяжелее, чем в другой.
Так он установил, что к первоначальному весу (каким бы он ни был!) надо прибавить /17 его часть, чтобы человеческая рука ощущала эту прибавку.
Возможно, чувство, которое Вебер исследовал на себе, было у него не очень развито. Потому что позднее ученые, экспериментируя с другими людьми, получили иные цифры: по-видимому, предел чувствительности к изменению нагрузки лежит не около одной семнадцатой, а у одной пятидесятой первоначального веса. Более дробные различия наша нервная система не воспринимает.
Но закон, названный именем Вебера, остается в силе: у каждого раздражителя есть своя определенная и постоянная (во всяком случае, при раздражениях средней силы) добавочная доза, которая вызывает в наших чувствах соответствующие ощущения.
Энергия для наших чувств
Итак, мы чувствуем с помощью электричества. Нервная система - это сложное переплетение электрических проводников. Но проводников, устроенных очень своеобразно: ток не бежит по нервам, как по проводам.
Для электронов в нерве приготовлено не ровное шоссе. Нет, их путь природа превратила в скачку с препятствиями.
Скачка начинается приблизительно так.
Нервная клетка, или нейрон, несколько похожа на вырванное с корнем дерево. "Корни" - тело клетки, взъерошенное исходящими из него отростками - дендритами. "Ствол" - аксон, длинное нервное волокно, растущее из тела клетки. На конце аксон ветвится - это "ветви" дерева, на которое похожа нервная клетка.
Аксон бывает и длинным и коротким. На некоторых нервных путях, соединяющих мозг человека с кончиками пальцев на ногах, только три нейрона, последовательно соединившись, образуют цепь нервной передачи. У них аксоны длиной больше метра! (Хотя сам нейрон, наделенный столь длинным "хвостом" меньше двух сотых сантиметра в поперечнике.) Но аксоны нейронов головного мозга обычно не длиннее сотых долей миллиметра.
Аксон - это тот проводник, по которому бежит нервный импульс. По веточкам на конце, которые входят в контакт с входными "клеммами" других нейронов, он передает возбуждение следующим членам нервной цепи. Место соединения аксона с дендритом либо телом другого нейрона называют синапсом.
Оболочка клетки, мы уже это знаем, постоянно "выкачивает" ионы натрия наружу, вон из клетки, и "накачивает" в протоплазму ионы калия.
Уже 100 лет, как известно, что протоплазма клетки заряжена отрицательно по отношению к окружающей клетку жидкости. По-видимому, активный и избирательный перенос ионов клеточной мембраной поддерживает электрическое напряжение на ее границах. В нервной клетке внутренний отрицательный потенциал равен приблизительно 70 милливольтам.
В некоторых клетках минус 80–90 милливольт. Но когда нейрон получает через свои "клеммы" от других нейронов электрические импульсы, они несколько понижают его внутренний электрический потенциал.
Дальше происходит вот что: "это снижение потенциала, - пишет Дин Вулдридж в книге, которую каждый должен прочитать, - распространяется на ближний участок основания аксона. Если деполяризация достигает достаточной величины, то аксон проявляет интересную, лишь ему свойственную особенность: происходит электрический "пробой" его оболочки. Точнее говоря, уменьшение его внутреннего потенциала с 70 до 60 милливольт ведет к внезапному изменению проницаемости мембраны, отделяющей протоплазму аксона от окружающей жидкости".
Отворяется, как иногда говорят физиологи, натриевая "дверца", ионы натрия, которые толпились снаружи у клеточной оболочки, бессильные ее преодолеть, сразу устремляются внутрь аксона. Они заряжены положительно, и поэтому внутренний потенциал аксона в месте, где произошел "пробой", падает еще ниже: от минус 60 милливольт до некоторой положительной величины по отношению к замембранной территории.
Положительный потенциал внутри клетки! - сразу же в соседнем участке аксона возникает новый "пробой". А за пробоем - перемещение ионов натрия внутрь аксона. Затем деполяризация и этого участка и новый, третий, "пробой" с ним по соседству. И так все дальше и дальше: вдоль по аксону бежит импульс деполяризации, или, как говорят, потенциал действия.
А в том месте, где только что был "пробой", разыгрываются уже другие события.
"Натриевая дверца", открывшись ненадолго, сейчас же закрывается, и открывается "калиевая дверца". Мембрана аксона быстро пропускает теперь сквозь себя ионы калия, которые торопливо выскакивают наружу и уносят с собой положительные заряды (ведь они, как и ионы натрия, тоже отмечены крестиками!). Сейчас же там, где открылась "калиевая дверца" и утекли плюсовые заряды, возникает номинальный отрицательный потенциал - минус 70 милливольт. И сейчас же снова в этой зоне аксона начинает действовать натриево-калиевый насос, а клеточная мембрана вновь устанавливает прежнюю сегрегацию ионов калия и натрия (обе дверки захлопнулись!).
Все происходит за одну-две тысячных доли секунды, и, продолжает Вулдридж, "к тому моменту, когда участок аксона вновь приобретает способность к возбуждению, потенциал действия уже проходит расстояние, во много раз превышающее диаметр аксона, и находится слишком далеко, чтобы вызвать повторный разряд в восстановившей свою возбудимость протоплазме". Вот почему нервный импульс всегда бежит по аксону только в одну сторону: прочь от своего нейрона к другому нейрону.
Как только мембрана, одевающая основание аксона, захлопнет обе "дверцы", новый нервный импульс может отправиться с этого старта в путешествие по аксону.
Если сигналы, побуждающие нейрон к действию, очень сильные, "пробой" быстро нарушает преграду, разделяющую внутренние и наружные ионы. Поэтому и нервные импульсы быстро бегут друг за другом: иногда через каждую сотую секунды. Но когда сигналы слабые, требуется больше времени для преодоления ионами пограничных постов мембраны. Тогда и частота нервных импульсов невелика.
По толстым нервным волокнам электрические разряды продвигаются быстрее, чем по тонким.
У человека есть аксоны, по которым они мчатся со скоростью урагана: 100 метров в секунду! Но есть и другие: возбуждение проходит по ним не быстрее пешехода - 3–4 километра в час (метр в секунду).
Однако с какой бы скоростью и частотой ни распространялись импульсы по нерву, они приходят к финишу в отличной форме: такими же сильными, какими тронулись со старта. Даже если от старта до финиша расстояние в тысячу раз больше, чем диаметр проводника, то есть нервного волокна.
В начале физиологи никак не могли понять, почему так невероятно "выносливы" эти электробегуны по нервам. Теперь мы знаем почему: ведь каждый "пробой" возбуждает импульс такой же силы, какой обладал породивший его самого импульс от предыдущего "пробоя". Таким образом, импульсы на всем пути своего продвижения бесконечное число раз заново возрождаются.
А энергию, необходимую для питания этой бесконечной регенерации, нервная клетка черпает, принудительно поддерживая (против норм осмотического давления) неравную концентрацию ионов натрия и калия по обе стороны своей оболочки.
Ионная сегрегация на границах атома жизни - вот, по-видимому, первичный источник энергии наших ощущений и чувств.
Касающийся света кусочек мозга
Когда мы смотрим на что-нибудь, в глаза попадают лучи света. Они могут идти прямо от солнца или лампы, но чаще - это отраженный свет. Поверхности предметов неровные и отражают свет по-разному. Поэтому мы и видим мир не однотонным и аморфным, а богатым красками и формами.
Наш глаз устроен, как фотографическая камера. Еще в прошлом веке Гельмгольц доказал это. Но как световая энергия преобразуется глазом в энергию нервных импульсов?