Номера, указанные в комментариях при объявлениях методов, ссылаются на спецификацию класса, которую мы составили в начале данного раздела. Сейчас мы не будем объяснять смысл ключевого слова const, он не так уж важен для понимания того, что мы хотим продемонстрировать на данном примере. Будем считать, что это ключевое слово необходимо для правильной компиляции программы.
Именованная функция-член (например, min()) может быть вызвана с использованием одной из двух операций доступа к члену класса. Первая операция доступа, обозначаемая точкой (.), применяется к объектам класса, вторая – стрелка (-) – к указателям на объекты. Так, чтобы найти минимальный элемент в объекте, имеющем тип IntArray, мы должны написать:
// инициализация переменной min_val
// минимальным элементом myArray
int min_val = myArray.min();
Чтобы найти минимальный элемент в динамически созданном объекте типа IntArray, мы должны написать:
int min_val = pArray-min();
(Да, мы еще ничего не сказали о том, как же проинициализировать наш объект – задать его размер и наполнить элементами. Для этого служит специальная функция-член, называемая конструктором. Мы поговорим об этом чуть ниже.)
Операции применяются к объектам класса точно так же, как и к встроенным типам данных. Пусть мы имеем два объекта типа IntArray:
IntArray myАrray0, myArray1;
Инструкции присваивания и сравнения с этими объектами выглядят совершенно обычным образом:
// инструкция присваивания -
// вызывает функцию-член myArray0.operator=(myArray1)
myArray0 = myArray1;
// инструкция сравнения -
// вызывает функцию-член myArray0.operator==(myArray1)
if (myArray0 == myArray1)
cout "Ура! Оператор присваивания сработал!\n";
Спецификаторы доступа public и private определяют уровень доступа к членам класса. К тем членам, которые перечислены после public, можно обращаться из любого места программы, а к тем, которые объявлены после private, могут обращаться только функции-члены данного класса. (Помимо функций-членов, существуют еще функции-друзья класса, но мы не будем говорить о них вплоть до раздела 15.2.)
В общем случае открытые члены класса составляют его открытый интерфейс, то есть набор операций, которые определяют поведение класса. Закрытые члены класса обеспечивают его скрытую реализацию.
Такое деление на открытый интерфейс и скрытую реализацию называют сокрытием информации, или инкапсуляцией. Это очень важная концепция программирования, мы еще поговорим о ней в следующих главах. В двух словах, эта концепция помогает решить следующие проблемы:
* если мы меняем или расширяем реализацию класса, то изменения можно выполнить так, что большинство пользовательских программ, использующих наш класс, их "не заметят": модификации коснутся лишь скрытых членов (мы поговорим об этом в разделе 6.18);
* если в реализации класса обнаруживается ошибка, то обычно для ее исправления достаточно проверить код, составляющий именно скрытую реализацию, а не весь код программы, где данный класс используется.
Какие же внутренние данные потребуются для реализации класса IntArray? Необходимо где-то сохранить размер массива и сами его элементы. Мы будем хранить их в массиве встроенного типа, память для которого выделяется динамически. Так что нам потребуется указатель на этот массив. Вот как будут выглядеть определения этих данных-членов:
class IntArray {
public:
// ...
int size() const { return _size; }
private:
// внутренние данные-члены
int _size;
int *ia;
};
Поскольку мы поместили член _size в закрытую секцию, пользователь класса не имеет возможности обратиться к нему напрямую. Чтобы позволить внешней программе узнать размер массива, мы написали функцию-член size(), которая возвращает значение члена _size. Нам пришлось добавить символ подчеркивания к имени нашего скрытого члена _size, поскольку функция-член с именем size() уже определена. Члены класса – функции и данные – не могут иметь одинаковые имена.
Может показаться, что реализуя подобным образом доступ к скрытым данным класса, мы очень сильно проигрываем в эффективности. Сравним два выражения (предположим, что мы изменили спецификатор доступа члена _size на public):
IntArray array;
int array_size = array.size();
array_size = array._size;
Действительно, вызов функции гораздо менее эффективен, чем прямой доступ к памяти, как во втором операторе. Так что же, принцип сокрытия информации заставляет нас жертвовать эффективностью?
На самом деле, нет. С++ имеет механизм встроенных (inline) функций. Текст встроенной функции подставляется компилятором в то место, где записано обращение к ней. (Это напоминает механизм макросов, реализованный во многих языках, в том числе и в С++. Однако есть определенные отличия, о которых мы сейчас говорить не будем.) Вот пример. Если у нас есть следующий фрагмент кода:
for (int index=0; indexarray.size(); ++index)
// ...
то функция size() не будет вызываться _size раз во время исполнения. Вместо вызова компилятор подставит ее текст, и результат компиляции предыдущего кода будет в точности таким же, как если бы мы написали:
for (int index=0; indexarray._size; ++index)
// ...
Если функция определена внутри тела класса (как в нашем случае), она автоматически считается встроенной. Существует также ключевое слово inline, позволяющее объявить встроенной любую функцию.
Мы до сих пор ничего не сказали о том, как будем инициализировать наш массив.
Одна из самых распространенных ошибок при программировании (на любом языке) состоит в том, что объект используется без предварительной инициализации. Чтобы помочь избежать этой ошибки, С++ обеспечивает механизм автоматической инициализации для определяемых пользователем классов – конструктор класса.
Конструктор – это специальная функция-член, которая вызывается автоматически при создании объекта типа класса. Конструктор пишется разработчиком класса, причем у одного класса может быть несколько конструкторов.
Функция-член класса, носящее то же имя, что и сам класс, считается конструктором. (Нет никаких специальных ключевых слов, позволяющих определить конструктор как-то по-другому.) Мы уже сказали, что конструкторов может быть несколько. Как же так: разные функции с одинаковыми именами?
В С++ это возможно. Разные функции могут иметь одно и то же имя, если у этих функций различны количество и/или типы параметров. Это называется перегрузкой функции. Обрабатывая вызов перегруженной функции, компилятор смотрит не только на ее имя, но и на список параметров. По количеству и типам передаваемых параметров компилятор может определить, какую же из одноименных функций нужно вызывать в данном случае. Рассмотрим пример. Мы можем определить следующий набор перегруженных функций min(). (Перегружаться могут как обычные функции, так и функции-члены.)
// список перегруженных функций min()
// каждая функция отличается от других списком параметров
#include string
int min (const int *pia,int size);
int min (int, int);
int min (const char *str);
char min (string);
string min (string,string);
Поведение перегруженных функций во время выполнения ничем не отличается от поведения обычных. Компилятор определяет нужную функцию и помещает в объектный код именно ее вызов. (В главе 9 подробно обсуждается механизм перегрузки.)
Итак, вернемся к нашему классу IntArray. Давайте определим для него три конструктора:
class IntArray {
public:
explicit IntArray (int sz = DefaultArraySize);
IntArray (int *array, int array_size);
IntArray (const IntArray rhs);
// ...
private:
static const int DefaultArraySize = 12;
}
Первый из перечисленных конструкторов
IntArray (int sz = DefaultArraySize);
называется конструктором по умолчанию, потому что он может быть вызван без параметров. (Пока не будем объяснять ключевое слово explicit.) Если при создании объекта ему задается параметр типа int, например
IntArray array1(1024);