Итак, мутации в гаплотипах потомков расходятся от предкового гаплотипа как круги по воде, число мутаций легко рассчитывается, и они подчиняются довольно простым количественным закономерностям. Для кругов на воде, расходящихся от места, куда был брошен камень, легко рассчитать, когда был брошен камень, если знать скорость распространения волны и место нахождения круговой волны в данный момент времени. Чем больше прошло времени – тем дальше круги ушли, тем больше они разошлись. Так и в гаплотипах – чем больше время, прошедшее от общего предка, тем больше мутаций накопилось в гаплотипах его потомков. Число этих мутаций связано с временем, прошедшим от общего предка, с числом гаплотипов в серии, и с константой скорости мутации в гаплотипах, и выражается простой формулой: n/N = kt, где n – число мутаций в серии из N гаплотипов, k – константа скорости мутации (в числе мутаций на гаплотип за условное поколение, равное 25 лет), t – число условных поколений, с табличной поправкой на возвратные мутации. На сотнях и тысячах примеров показано, что эта формула работает при любом числе гаплотипов и мутаций в них, и при любом времени, прошедшем от общего предка рассматриваемых гаплотипов. Однако при очень больших временах, более 10–20 тысяч лет, и особенно более 100 тысяч лет, нужно использовать гаплотипы с "медленными" маркерами, то есть с малыми константами скоростей мутаций, и тем самым снижать число мутаций и число возвратных мутаций. По аналогии, вряд ли целесообразно изучать скорости радиоактивного распада элементов со временами полураспада в тысячелетия, используя секундомер. Или пытаться изучать круги на воде за километры от места, куда был брошен камень, для этого нужно значительно более мощное воздействие. Как всегда, нужен конкретный анализ в конкретной ситуации, единых подходов на все случае жизни не бывает. Варианты конкретного анализа в конкретных ситуациях и рассматривает ДНК-генеалогия. Некоторые ситуации и расчеты мы рассмотрим ниже.
Теперь вопрос – насколько надежны величины констант скоростей мутации в соответствующих маркерах Y-хромосомы? Они надежны настолько, насколько надежно их определяют, калибруют, проверяют исследователи. Когда это делают популяционные генетики – совершенно ненадежны, они это показали последними двадцатью годами их так называемых "исследований". Они до сих пор так и не знают, какие значения эти константы имеют. Они до сих пор, в академических статьях 2015 года, продолжают использовать "скорости Животовского". Причем "на полном серьезе" обсуждают, что на временах до 5 тысяч лет эти "скорости" сильно завышают датировки, и вот на временах 40–60 тысяч лет подходят в самый раз. Они так и не поняли, что 23-маркерные гаплотипы на временах 40–60 тысяч лет вообще не применимы, там больше половины столь "быстрых констант скоростей", что они вообще не работают, потому что мечутся как белка в колесе. Это все равно, что секундомером измерять астрономические явления продолжительностью в тысячи и миллионы лет. И попгенетики этого так еще и не поняли!
Иногда принцип датировки "разбега" мутаций в гаплотипах с течением времени называют "принципом молекулярных часов". Смысл в этом есть, но примитивный. Дело не в том, что часы, а в том, чтобы правильно ходили. Любая реакция в химических или биологических системах, описываемая константой скорости первого порядка, есть "обычные молекулярные часы", поскольку связана с хронологией процесса на молекулярном уровне. Динамика любого такого процесса связана с временем согласно формуле с = с0е, где c0 – исходное состояние системы (например, начальное количество или концентрация изучаемого вещества; количество гаплотипов Y-хромосомы в изучаемой выборке, и т. д.), с – состояние системы в определенный момент времени t (где t – время прошедшее с начала реакции, t-to), или количество базовых, то есть исходных гаплотипов в изучаемой выборке в настоящее время, спустя время t, прошедшее со времени жизни общего предка изучаемой серии гаплотипов), k – константа скорости реакции (мутаций, в данном случае). Эту же формулу можно переписать в виде ln(co/c) = kt, и она становится выражением логарифмического метода анализа выборок гаплотипов в ДНК-генеалогии. Берем, скажем, сто или тысячу гаплотипов, или любое другое их число, делим на число базовых (то есть одинаковых, идентичных друг другу гаплотипов, суть предковых гаплотипов, которые не успели мутировать за время t, прошедшее со времени жизни общего предка), берем натуральный логарифм (ln), и получаем произведение kt, то есть константу скорости мутации, помноженную на число лет, прошедшее со времени жизни общего предка, или на число условных поколений, опять же прошедших после общего предка – в зависимости от того, выражали константу скорости в годах, или в поколениях.
Логарифмический метод будет обсуждаться в следующем разделе, а пока обратим внимание, что результаты расчетов в ДНК-генеалогии обычно получаются в виде произведения kt. Это относится и к логарифмическому методу (см. выше), и к так называемому линейному методу, в котором считают число мутаций в серии гаплотипов, происходящих от одного общего предка, и делят их на число гаплотипов и на константу скорости мутаций в гаплотипе.
Отсюда уже видно, что неважно, сколько лет положить на условное поколение – 20, 25, 30, 35 или любое другое число лет, поскольку константа скорости мутации тут же подстроится, они завязаны друг на друга, произведение-то одно. В ДНК-генеалогии, как отмечалось выше, берется 25 лет на условное поколение, и, соответственно, константы скорости мутации приобретают определенные значения, получаемые по калибровке (см. ниже). Например -
для 12-маркерных гаплотипов константа равна 0.02 мутаций на гаплотип на условное поколение,
для 25-маркерных 0.046 мутаций на гаплотип на условное поколение,
для 37-маркерных – 0.09,
для 67-маркерных – 0.12,
для 111-маркерных – 0.198 мутаций на гаплотип на условное поколение.
Если это пересчитать в расчете не на гаплотип, а на маркер, то получим соответствующие константы скорости 0.00167, 0.00184, 0.00243, 0.00179, 0.00178 мутаций на маркер на условное поколение. Уже видно, что константы скорости разные для разных гаплотипов, и различаются, например, для 37-маркерных и 12-маркерных гаплотипов в 1.46 раз, то есть на 46 %. А если сравнить с 6-маркерными гаплотипами (константа скорости мутации на гаплотип равна 0.0074, на маркер 0.00123), то диапазон различий в константах в зависимости от длины маркера расходится на уже на 1.98, или на 98 %. Вывод – никак нельзя принимать константы скорости мутации на маркер за постоянные величины, одинаковые для всех гаплотипов, как делают в своих расчетах популяционные генетики. 98 % ошибки в расчетах только за это допущение – цена такого неумного (или неквалифицированного, или некомпетентного) предположения. Иначе говоря, иметь часы – дело нехитрое, но надо, чтобы они были отрегулированы. Это означает, что к ним должны прилагаться корректные константы скоростей мутаций, а корректные величины получаются корректной калибровкой.
Подходим к вопросу о калибровке констант скоростей мутаций.
Данные по калибровке были опубликованы в 2011 году в журнале Advances in Anthropology, и недавно изложены в популярном виде на Переформате (http://pereformat.ru/2014/11/dna-calibration/). Суть в том, что были взяты генеалогические данные для 13 семей, удовлетворяющие сформулированным жестким критериям. Эти 13 семей (или "Проектов") были отобраны из сотен других, которые были менее многочисленны или датировки которых были менее достоверны, или гаплотипы были короткими, то есть низкого разрешения.
В указанной статье приведены многочисленные графики для гаплотипов разной протяженности, и каждый график иллюстрировал надежность калибровки, доверительные интервалы и прочее. Статья – редкая по глубине обоснований и достоверности полученных данных, результаты калибровок выверены на 3160 гаплотипах из 55 гаплогрупп и субкладов, из них 2489 гаплотипов были 67-маркерными.
Не будем приводить все калибровочные графики, дадим только калибровочную диаграмму для 37– и 67-маркерных гаплотипов. На рис. 12 на горизонтальной оси – число лет до общего предка каждой из документированных ДНК-генеалогических "семей", на вертикальной оси – среднее число мутаций на маркер (поскольку гаплотипы разные – 37– и 67-маркерные) в гаплотипах, принадлежащих этим семьям.