Анатолий Клёсов - Кому мешает ДНК генеалогия? стр 34.

Шрифт
Фон

3499±352 по 12-маркерным гаплотипам, линейный метод

4161±421 по 6-маркерным гаплотипам, линейный метод

Как видим, расчеты дали вполне удовлетворительное совпадение в пределах погрешности измерений, даже для коротких 12– и 6-маркерных гаплотипов.

Человек сторонний, не очень знакомый со статистикой, скажет – как же так, расчеты по одному маркеру, DYS390, дали примерно 4580 лет со времени жизни общего предка субклада R1b-L21, а расчеты по всем 111-маркерным гаплотипам, с общим числом аллелей 384728, дали 3810±381 или 4197±274 лет, по линейному и квадратичному методам, то есть заметно ниже. Но в этом статистика и заключается, что мутации неупорядоченные, по отдельности различаются, но все они группируются вокруг некого "центра", "ядра", и при усреднении математический аппарат дает среднюю величину и величину погрешности расчетов, или среднее квадратичное отклонение при определенных доверительных интервалах. В данном случае DYS390 – это всего один маркер, а их сто одиннадцать. Но даже в 6-маркерных гаплотипах, куда DYS390 входит, усреднение по всем шести дает датировку 4161±421 лет, то есть датировка по одному DYS390 входит в диапазон погрешностей. А датировка по 6-маркерному гаплотипу входит в диапазон погрешностей для серии 111-маркерных гаплотипов.

Вопрос 63: Как проводились расчеты констант индивидуальных скоростей мутаций для всех 111 маркеров?

Это – результат большой работы, которая проводилась с 24 сериями 111-маркерных гаплотипов практически всех гаплогрупп, для которых в базах данных эти гаплотипы были числом хотя бы в несколько десятков. Для большинства гаплогрупп расчетные серии содержали сотни гаплотипов – помимо упомянутых ранее 3466 гаплотипов субклада R1b-L21, были 859 и 976 111-маркерных гаплотипов гаплогруппы R1a (разные серии), 829 гаплотипов гаплогруппы R1b-Uio6, 968 гаплотипов гаплогруппы I1, 661 гаплотипов гаплогруппы J, 1417 гаплотипов гаплогруппы J2, и так далее, общим числом П850 гаплотипов в 111-маркерном формате. При этом проверялась сходимость расчетов гаплотипов разных форматов и расчетов разными методами. Результаты этой работы опубликованы в Вестнике Академии ДНК-генеалогии в 2015 году.

Расчеты констант скоростей мутаций в маркерах производятся на основании их распределений в больших сериях гаплотипов. Чем меньше константа скорости мутации данного маркера, тем, естественно, меньше мутаций за определенное время, в качестве которого обычно рассматривается время, прошедшее от общего предка. Если взять, например, серию из 3466 гаплотипов субклада R1b-L21, к которой мы здесь неоднократно обращались именно потому, что она одна из наиболее репрезентативных по численности гаплотипов, то маркере DYS472 там всего пять мутаций:

7 – 1 (то есть аллель 7 встречается в 3466 маркерах DYS472 всего один раз)

8 – 3461 раз

9 – 4 раз

В маркере DYS393 в той же серии уже 232 мутации:

11 – 2

12 – 81

13 – 3237

14 – 145

15 – 1

В маркере DYS390 – 1165 мутаций:

21 – 3

22 – 22

23 – 228

24 – 2364

25 – 815

26 – 33

27 – 1

Поскольку время от общего предка во всех трех случаях одно и то же, то даже не зная его, уже можно заключить, что константы скорости мутаций должны отличаться друг от друга в пропорции 5: 232: 1165 (числа – количества мутаций от базового маркера для трех маркеров), или, пропорционально, 1: 46: 233 Это – тогда, когда нет осложняющих факторов, которые, впрочем, есть всегда. Среди этих факторов – примесь посторонних гаплотипов, почти неизбежная при массовых тестированиях, перекошенная серия гаплотипов, когда одних родственников (даже отдаленных) в серии больше, чем других, когда в серии присутствуют представители нижестоящих субкладов, причем одних субкладов больше, чем других, и так далее. Вывод такой, что одной серией гаплотипов при расчетах констант скоростей мутаций ограничиваться нельзя, надо проводить рассмотрение многих серий гаплотипов из разных гаплогрупп, выяснять по возможности причины различий, и усреднять полученные константы скоростей мутаций по разным сериям. В некоторых сериях отклонения буквально гипертрофированные – например, в той же серии R1b-L21 оказалось несколько сотен гаплотипов дочернего субклада R1b-M222, у которого характерная величина аллели DYS392=14 вместо обычной DYS392=13. Если этого не знать или не заметить, то число мутаций в медленном маркере DYS392 окажется завышенным на сотни мутаций, и формально рассчитанная "константа скорости" окажется несуразно высокой.

При сопоставлении расчетных констант по большой серии гаплогрупп такие искажения должны быть заметны, проанализированы, и если причина выяснена и действительно показано, что это искажения, то эти выпадающие величины должны быть приняты во внимание. Таким образом видно, что это кропотливая и большая работа. Дилетанты или прочие любители обычно выхватывают одну серию гаплотипов, делят одно на другое, без всяких перекрестных проверок и размышлений, и вуаля, ответ готов. Он часто такой – "расчеты по мутациям смысла не имеют". Пример такой дилетантской (в данном отношении) статьи Busby et al (2011), сюда же относятся неквалифицированные рассуждения Dienekes Pontikos, и прочих. Они основывались именно на выхватывании отдельных величин, которые оказались искаженными, и отсюда делались "глобальные" негативные выводы. По аналогии, можно бросить монету три раза, и на основании полученного результата объявить теорию вероятности "псевдонаукой".

Проще с протяженными гаплотипами, в первую очередь 67– и 111-маркерными, в которых искажения в индивидуальных маркерах, которые (искажения) также имеют статистический характер, уравновешиваются, компенсируются на множестве маркеров, и в итоге дают взаимно согласованные данные. Примеры (показаны датировки протяженных серий 111-маркерных гаплотипов, первая колонка – 67-маркерные гаплотипы, вторая – 111-маркерные), датировки без округления:

Кому мешает ДНК-генеалогия?

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке