Джей Форрестер - Основы кибернетики предприятия стр 15.

Шрифт
Фон

Эти допущения составляют ту же основу, на которой мы строим модели планировок и оборудования. Модель фирмы будет оправдана постольку, поскольку она позволит улучшить управление фирмой. Это не значит, что результаты должны быть совершенными, чтобы модель оказалась эффективной. Модель может принести пользу при определении степени чувствительности производственной системы к изменениям ее образа действий или структуры. Она может помочь в определении относительной ценности информации, отличающейся по своему характеру, точности и своевременности. Она может показать, насколько система усиливает или ослабляет возмущения, вызванные воздействием окружающей среды. Это инструмент выявления уязвимости системы под воздействием колебаний, чрезмерного расширения или спада. Модель может указать способ действия, который позволит улучшить ее характеристики. Одним словом, математические модели должны служить орудием "организации предприятия", то есть проектирования таких промышленных организаций, которые наилучшим образом отвечают своему назначению.

Из вышеприведенных соображений следует, что эффективная модель реальной системы должна выражать сущность системы, она должна показывать, каким образом изменения образа действий или структуры системы приводят к улучшению или ухудшению ее поведения. На модель возлагается задача выявления различных видов внешних возмущений, к которым система чувствительна. Она должна служить руководством в деле повышения эффективности управления.

Однако необходимо особо подчеркнуть, что предсказание определенных событий в определенный будущий момент времени не входит в задачу модели. Часто ошибочно полагают, что эффективная динамическая модель должна предсказывать конкретное состояние системы в какой-то будущий момент времени. Это может быть желательным, но при оценке эффективности моделей не следует исходить из их способности предсказывать будущие конкретные действия. Такая позиция будет более благоразумной, поскольку имеются достаточные основания считать, что такие предсказания не будут достигнуты в пределах обозримого будущего.

3. 7. Источники информации для построения модели

Многие не признают потенциальной пользы моделей деятельности предприятий, основываясь на том, что у нас нет достаточных данных для моделирования. Они уверены, что первым шагом должен быть широкий сбор статистических сведений. Верно же как раз обратное.

Мы обычно приступаем к делу, уже будучи вооружены достаточной описательной информацией, чтобы начать строить весьма эффективную модель. Нужно начинать именно с моделирования. И одним из первых применений модели должно быть установление того, какие фактические данные следует собирать. Бесспорно, что сбор сведений - операция весьма трудоемкая и, вместе с тем, ценность этих данных гораздо ниже затрат на их получение. В то же время наиболее существенная и легкодоступная информация обычно не выявляется и не используется.

Конторская работа по собиранию цифрового материала едва ли пригодна для выявления новых понятий и неизвестных ранее, но важных переменных. Широкий сбор данных сам по себе не может дать представление об общем характере изучаемых переменных. Более того, некоторые наиболее важные источники информации, необходимые для построения динамической модели, вообще не существуют в обычном смысле слова, то есть в виде статистических таблиц.

Каково относительное значение различных переменных? Насколько точной должна быть необходимая информация? Какими будут последствия использования ошибочных данных? На эти вопросы следует ответить прежде, чем затрачивать большие средства и много времени на сбор данных.

Фактически мы постоянно пользуемся моделями фирм и экономических систем на базе данных, имеющихся под рукой. Словесное отображение или описание есть модель; наше мысленное представление о том, как функционирует организация, - тоже модель. Словесная модель и математическая модель очень близки друг к другу. Обе являются абстрактными описаниями реальных систем. Математическая модель более упорядоченна, ибо для нее характерно стремление к устранению неясностей и противоречий, которые могут быть в словесном описании. Математическая модель более "точна". Под точностью подразумевается "конкретность", "четкость", "отсутствие расплывчатости". Математическая модель не обязательно более "правильна", чем словесная, если под правильностью понимать степень соответствия реальному положению вещей. Математическая модель могла бы "точно" представлять наше словесное описание и все же быть совершенно "неправильной".

Ценность математической модели во многом связана с ее "точностью", а не с ее "правильностью". Само построение математической модели заставляет нас быть точными. Оно требует конкретного определения того, что именно мы имеем в виду. Построение модели не связано тем или иным образом с правильностью того, что точно установлено.

Распространенное мнение, будто математическая модель не может быть построена до тех пор, пока не будут полностью известны каждая константа и функциональная зависимость, представляется недоразумением. Оно часто ведет к пренебрежению весьма важными факторами (большинством "неуловимых" влияний, определяющих выбор решения) на том основании, что они не учтены или не поддаются учету. Пренебрежение такими переменными равносильно сведению их влияния на выбор решения к нулю, что является заведомо ошибочным.

При отборе данных и оценке их достоверности надо исходить из особенностей уже обсуждавшихся объектов и целей моделирования.

Если единственно полезной и приемлемой моделью является та, которая полностью объясняет реальную систему и предсказывает ее конкретное состояние в будущем, тогда недостаточно обеспечить точность модели, а нужно, чтобы она была правильной. При отсутствии такой правильности моделирование становится малоэффективным.

Если же задача состоит в том, чтобы углубить понимание изучаемой системы, модель может быть эффективной и в том случае, если она отражает только то, что мы считаем сущностью изучаемой системы. Такая модель придает точность нашему мышлению; неопределенность подлежит устранению в процессе построения математической модели; мы получаем возможность решить вопрос об относительной важности различных факторов и обнаружить несоответствия в наших исходных положениях. Нередко оказывается, что наши допущения, касающиеся отдельных компонентов системы, не могут привести к ожидаемым последствиям. Наша словесная модель, будучи преобразована в точную математическую форму, может оказаться не соответствующей качественной природе реального мира. Мы можем убедиться, что никакой правдоподобной комбинацией допущений нельзя оправдать наших излюбленных предрассудков. На каждой такой ошибке мы учимся.

Таким образом, мы пользуемся моделью так же, как инженер или военный стратег. Каково было бы положение, если бы реальная система соответствовала нашим отправным допущениям? Какой была бы предполагаемая система, если бы мы создавали ее согласно модели? Какие изменения в модели могли бы приблизить ее к характеристикам той существующей системы, которую она призвана отразить? Такие вопросы можно задать по отношению к замкнутой модели (или стремящейся к замкнутой), они особенно важны в том случае, когда речь идет о системе столь сложной, что правильные ответы не могут быть получены путем ее простого рассмотрения.

Модель прежде всего должна иметь структуру, то есть определенный порядок внутренних взаимосвязей. Допущения относительно структуры должны быть сделаны раньше, чем мы начнем собирать данные о реальной системе. Имея структуру, соответствующую нашим описательным знаниям о системе, мы можем сделать следующий шаг и придать коэффициентам реальные числовые значения, поскольку коэффициенты должны отражать строго определенные характеристики реальной системы. Затем можно приступать к изменениям модели и реальной системы, чтобы ликвидировать их несоответствия и приблизить к желательному уровню эффективности.

Такова позиция руководителя по отношению к словесному описанию, которое он использует в качестве модели управляемой им. фирмы. Он стремится уяснить, какое значение имеют для него наблюдаемые факторы, пытается связать отдельные формы поведения и характеристики системы с вытекающими из них следствиями, пробует дать оценку результатам изменения тех частей системы, которые находятся под его управлением.

На определенной ступени деталировки модели для ее приближения к реальной или предполагаемой системе можно использовать саму модель для изучения значения различных допущений, на которых она построена. Для каждого числового значения, по необходимости принятого нами произвольно, существуют известные пределы, между которыми лежит истинное значение величины. Часто приходится наблюдать случаи, когда модель сравнительно нечувствительна к изменениям значений в этих пределах; при этом, по-видимому, нецелесообразно уточнять принятую приблизительную оценку.

С другой стороны, общее качественное поведение системы может в значительной мере зависеть от принятых нами численных значений. В этих случаях надо помнить, что принятые допущения представляют некоторый риск При выявлении чувствительности модели к ошибкам в численных значениях коэффициентов нужно выбирать между:

- измерением соответствующих величин с достаточной точностью;

- регулированием установленной величины в требуемых пределах;

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Похожие книги