Конечно, число пуль, попадающих в ящик, будет меняться вместе с х. На диаграмме я отложу по горизонтали число пуль, попадающих в ящик, если его установить в определенном положении, за один час. В результате у меня получатся плавные кривые (см. рис. 30), так как, если ящик поместить непосредственно за отверстием, в него попадет много пуль, а если его несколько сместить в сторону, это число уменьшится, ибо теперь приходится рассчитывать на то, что пули отскочат от краев отверстия, и в конце концов число пуль, попадающих в ящик, спадет до нуля. Полученные кривые мы обозначим через
Я могу просто болтать пальцем в воде, вызывая волнение, а в качестве экрана можно взять деревянную доску с отверстием, через которое волнение станет передаваться остальной воде. Затем установим еще одну доску с двумя отверстиями, а за ней еще и детектор. Что же мы собираемся измерять теперь? Детектор должен обнаружить степень волнения воды. Например, в воду можно бросить пробку и наблюдать за тем, как высоко она подымается и опускается на волнах. Я наблюдаю при этом за энергией колебаний пробки, но она в точности пропорциональна энергии, принесенной волнением. Еще одна деталь: болтать пальцем нужно очень равномерно, чтобы все волны были на равном расстоянии друг от друга.
Говоря о таких волнах, прежде всего важно отметить, что величина, которую мы здесь измеряем, может принимать любые значения. Мы измеряем интенсивность волнения, или энергию колебаний пробки, и если волнение очень слабое, если я только слегка болтаю пальцем, то пробка будет колебаться еле-еле. Но при любой величине колебаний пропорциональность сохраняется. Колебания пробки могут быть любыми - они не увеличиваются дискретными порциями, и здесь нельзя сказать, что либо они есть, либо их нет.
Итак, мы собираемся измерять интенсивность волнения, или, точнее говоря, энергию, генерируемую волнением в некоторой точке. Так как же меняется эта интенсивность, которую я стану обозначать
{9}
В физике возможна такая интерференция, в результате которой суммарное волнение оказывается сильнее индивидуальных. Но самое важное, что I12 не получается в виде суммы I1 и I2. Интерференция между двумя волнами приводит к усилению интенсивности в одном месте и к ослаблению в другом. Выяснить, на что похожи кривые I1 и I2, можно, закрывая по очереди одно из отверстий во втором экране и оставляя другое открытым. Очевидно, что в этом случае никакой интерференции нет, и соответствующие кривые показаны на рис. 31. Как нетрудно заметить, I1 имеет тот же характер, что и N1 в задаче с пулями, а I2 похожа на N2 и, несмотря на это, I12 не имеет ничего общего с N12.
Математика образования I12 на самом деле довольно интересна. Дело в том, что высота воды, которую мы будем обозначать через h, в случае когда открыты оба отверстия, равна сумме высот, создаваемых волнением в случае одного открытого отверстия 1 и в случае одного открытого отверстия 2. Поэтому, если из отверстия 2 приходит впадина волны, соответствующая высота h отрицательна и она компенсирует положительную высоту h для волны, пришедшей из отверстия 1. Волнение воды можно характеризовать ее высотой, но оказывается, что интенсивность волнения в любом случае, например тогда, когда открыты оба отверстия, не совпадает с высотой воды в данной точке, а пропорциональна квадрату этой высоты. И именно потому, что мы имеем дело с квадратами, получаем наши очень интересные кривые: