Голышев Виктор Петрович - Характер Физических Законов стр 23.

Шрифт
Фон

Все упирается в то, как объяснить марсианину, что такое лево и что такое право. "Ну, - скажете вы, - возьмем сахарную свеклу, сделаем сахар, растворим его в воде и окажется...", но то-то и оно, что на Марсе не растет сахарная свекла. Да, кроме того, нам никак не узнать, не привела ли случайность в начале эволюции жизни на Марсе (даже если она привела к возникновению белков, аналогичных здешним) к выделению противоположной ориентации. Так что мы не знаем, как ему объяснить это. Поразмыслив на эту тему довольно долго, вы это поймете и решите, что это вообще невозможно.

Но приблизительно пять лет тому назад был проделан один эксперимент, результаты которого были сплошной загадкой. Я не буду здесь вдаваться в подробности, но мы оказывались во все большем и большем затруднении, во все более и более парадоксальном положении, пока, наконец, Ли и Янг[8] не высказали предположения, что, может быть, принцип симметрии относительно правого и левого, согласно которому природа не реагирует на зеркальное отображение, неверен, и тогда это позволит разрешить целый ряд загадок. Ли и Янг предложили некоторые более прямые экспериментальные доказательства, и я очень коротко расскажу о самом прямом из них.

Возьмем явление радиоактивного распада, в котором испускаются электрон и нейтрино, например то, о котором мы уже говорили раньше и которое связано с распадом нейтрона на протон, электрон и антинейтрино. Есть еще много других реакций радиоактивного распада, при которых заряд ядра увеличивается на единицу и испускается электрон. Но здесь интересно вот что: если измерить вращение этого электрона - а электроны испускаются, вращаясь вокруг собственной оси, то окажется, что все они вращаются справа налево (если смотреть им вслед, т.е. когда они испускаются в южном направлении, то вращаются так же, как и Земля). В том, что испускаемые электроны всегда вращаются в одном направлении, что у них, так сказать, левосторонняя ориентация, есть определенный смысл. Дело здесь обстоит так, как будто при ?-распаде у ружья, стреляющего электронами, нарезной ствол. Нарезать ствол можно двумя способами. Здесь всегда есть направление "наружу", и у вас всегда есть выбор нарезать ствол так, чтобы пуля вращалась либо справа налево, либо слева направо. Наш эксперимент показывает, что электронами стреляют из оружия, нарезанного справа налево. Поэтому, используя этот факт, мы можем позвонить нашему марсианину и сказать: "Послушай-ка, возьми радиоактивное вещество, нейтрон, и понаблюдай за электронами, испускаемыми при ?-распаде. Если электрон выстреливается вертикально вверх, то направление его вращения из-за спины в тело будет

Поэтому мы знаем, что если путь немножко изменить, то это в первом приближении не изменит действия. Нарисуем какой-нибудь путь, соединяющий точки А и В, и другой возможный путь следующего вида (см. рис. 27). Сначала мы перепрыгиваем сразу в близлежащую точку С, а затем движемся точно по такому же пути, как и раньше, до другой точки D, отстоящей от В на то же расстояние, что и С от А, поскольку оба пути абсолютно идентичны. Но, как мы только что установили, законы физики таковы, что общая величина действия при движении по пути АСDВ в первом приближении совпадает с действием при движении по первоначальному пути А В - в силу принципа минимума, если АВ - реальный путь.

Но это еще не все. Действие при движении по исходному пути от A до В должно совпадать с действием при движении от С до A, если мир не меняется при пространственных переносах, так как разница между этими двумя путями лишь в пространственном сдвиге. Поэтому если принцип симметрии относительно пространственных переносов справедлив, то действие при движении по пути от А до В должно быть таким же, как и на пути от С до D. Однако для настоящего движения действие для сложной траектории ACDB почти в точности совпадает с действием для траектории АВ и, следовательно, с действием для одной своей части, от С до D. Но действие для сложного пути представляет собой сумму трех частей: действие для движения от A до С, от С до D и от D до В. Поэтому, вычитая равное из равного, мы увидим, что вклад от движения от А до С и от D до В должен в сумме давать нуль.

Но при движении по одному из этих отрезков мы движемся в одну сторону, а при движении по другому - в другую. Если теперь взять действие при движении от А до С и рассматривать его как эффект движения в одном направлении, а действие при движении от D к В - как действие при движении от В к D, но с другим знаком из-за противоположного направления движения, то мы увидим, что для обеспечения нужного равенства необходимо, чтобы действие при движении из А в С совпадало с действием при движении из В в D. Но это - изменение действия при маленьком шаге из В в D. Эта величина - изменение действия при маленьком шаге вправо - одна и та же и в начале (от А к С) и в конце (от В к D). Значит, у нас имеется величина, которая не меняется со временем, если только справедлив принцип минимума и выполняется принцип симметрии относительно пространственных переносов.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3