Прохорович Михаил Александрович - Курьёзы и юмор с физико-математическим уклоном

Шрифт
Фон

Annotation

Этот сборник научного юмора с физико-математическим уклоном можно читать с любой страницы: приведенные в нём байки, исторические анекдоты и реальные истории связаны между собой только тематически.

Курьёзы и юмор с физико-математическим уклоном

Часть 1: со ссылками на источники

Часть 2: истории мехмата

Список литературы

notes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

Курьёзы и юмор с физико-математическим уклоном

Часть 1: со ссылками на источники

Эта часть составлена из отдельных «зарисовок» в основном это общеизвестные истории, легенды и факты, большинство из которых можно найти в нескольких источниках. Самой известной книгой такого сорта является, конечно, неоднократно переиздававшийся сборник «Физики шутят» [18]; также следует упомянуть более современную книгу «Математики тоже шутят» [36]. Стиль изложения соответствует подборкам [24] и [25].

Если «зарисовка» приводится в нескольких источниках, то, как правило, выбирается один из вариантов изложения или цитирования. Иногда изложение бывает достаточно вольным, однако, ссылки даются на все встречавшиеся составителю упоминания и с максимально возможной строгостью (вплоть до указания страниц). Источники, на которые в тексте дается лишь одна-две ссылки, не выносятся в список литературы, а указываются в сносках.

Читателю рекомендуется самому определять степень достоверности приведенной информации все необходимые ссылки для этого указаны (вопрос, доверять ли указанному в ссылке печатному изданию остается за читателем можно, например, самостоятельно просмотреть указанные в списке литературы книги и библиографию к ним).

Приведенные в этой части «зарисовки» отсортированы в порядке появления ссылок. Материалы из одного и того же источника отсортированы в порядке возрастания номера цитируемых страниц.

В конце приводится некоторое количество историй и баек без ссылок они являются достаточно известными, однако, по разным данным они происходили с разными людьми, равно как одно и то же изречение нередко приписывается разным авторам. Несмотря на непроверенность информации, байки кажутся интересными и были включены в сборник.

Буду рад сотрудничеству, а также любой помощи по сбору материалов. Если у Вас есть замечания, дополнения или комментарии к нижеизложенному, а также какие-либо вопросы, касающиеся данного сборника пишите на адрес prohorovich@mail.ru.

Аксиома выбора

Аксиома Цермело (или аксиома выбора) была встречена бурной полемикой. Рассел высказывался о ней так: «Сначала она кажется очевидной; но чем больше вдумываешься, тем более странными кажутся выводы из этой аксиомы; под конец же перестаешь понимать, что же она означает». [1, стр. 6]

Задача о брахистохроне

В 1696-м году И.Бернули и Лейбниц бросили две дьявольские загадки[1] это был вызов математикам Европы. Задачи в течении шести месяцев не давали покоя европейским математикам, а 29 января

1696 года о них услышал Ньютон. Он пошел домой и, пообедав, решил эти задачи, а на следующий день анонимно передал решение в Королевское общество. Анонимность сохранить не удалось увидев решение, Бернулли воскликнул: «Tanquam ex ungue leonem!» («Льва узнают по когтям!») [1, стр. 14] [3, стр. 99].

Как отпугнуть читателя

Максвелл обозначал векторы готическими буквами, и Хэвисайд сетовал на этот «несчастливый выбор», так как «одного этого достаточно, чтобы вызвать предубеждение читателя против векторного анализа». [1, стр. 16]

Геометрия Лобачевского

В период с 1823 по 1826 г. Лобачевский создал свою неевклидову геометрию, а в 1829 г. опубликовал «Рассуждение о принципах геометрии». Началась травля. В 1841 г. с его книгой «Геометрические исследования по теории параллельных линий» (изданной на немецком языке) познакомился Гаусс и высоко оценил ее в дружеской переписке.

Признание пришло только в 1868 г. «Чем Коперник был для Птолемея, тем был Лобачевский для Евклида» (известные слова Клиффорда). [1, стр. 2324]

360° или почему круг стали делить на 360 частей

Как заметили Вавилонские жрецы, солнечный диск укладывается по дневному пути Солнца 180 раз «Солнце делает 180 шагов». Тогда путь за сутки равен «360 шагам». Латинское слово gradus как раз и означает «шаг». [1, стр. 27]

«Не по-нашему»

До распространения современного способа деления эта операция была трудной и громоздкой, и методов было почти столько же, сколько учителей арифметики. Современный способ описан впервые в рукописи неизвестного автора (1460). Последний учебник, в котором деление излагается «не по-нашему», вышел в 1800 г. [1, стр. 29]

Квадратура круга

Неразрешимость задачи о квадратуре круга[2] обусловлена трансцендентностью числа π, что было доказано в 1882-м году Линдеманом. Он считается единственным человеком, решившим задачу о квадратуре круга (несмотря на то, что его решение отрицательное). [1, стр. 54] [1, стр. 94]

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке