N730 Компьютерра - Журнал "Компьютерра" 722 стр 7.

Шрифт
Фон

Механизм поглощения света в новом покрытии качественно иной, чем во всех существующих, и до конца еще не понятен. Он позволяет добиться малого отражения в широком диапазоне длин волн, при любой поляризации и почти любых углах падения излучения. К сожалению, механическая прочность агрегата невелика, хотя материал и выдерживает нагрев до полутора тысяч градусов.

Ученые намерены продолжить исследования, измерив свойства покрытия в инфракрасной и микроволновой области спектра. Кроме того, физики собираются разработать полноценную теорию материалов такого типа и даже вычислить "абсолютный минимум" их возможного отражения. ГА

Дикая, но

Плохая состоит в том, что пылинки, добытые с таким трудом, вовсе не являются образчиком того вещества, из которого когда-то формировалась Солнечная система.

Понять разочарование астрономов можно. Запущенный в 1999 году зонд Stardust, по замыслу авторов проекта, должен был посетить комету Вильда 2 (Wild 2), которая лишь в конце двадцатого века под влиянием Юпитера изменила свою орбиту и стала наведываться в центральную часть нашей планетной системы. До той поры (и это подтверждают расчеты) путь кометы пролегал вдали от Солнца, в областях, "не тронутых высокими температурами". Там, по соседству с планетами-гигантами и дальше, вплоть до существующего в теории облака Оорта, должны были образовываться кометы из того самого первоначального вещества, которое так мечтали заполучить ученые. Однако исследования ясно дали понять, что Вильда 2 родом не оттуда.

Вторая новость заключается в том, что вещество, из которого состоит Вильда 2, подвергалось сильному нагреву. Следовательно, давным-давно комета образовалась вблизи от Солнца, а уже потом

была выброшена во внешние области. Этот факт хорош тем, что астрономов ткнули носом в их ошибочные теории. Астероиды и кометы до сих пор делили на два разных класса небесных тел, имеющих разный состав и происхождение. И вот оказалось, что Вильда 2 своим составом больше напоминает астероид. Деление на "черное" и "белое" совершенно себя не оправдало, и, по-видимому, в космосе полно тел, занимающих промежуточное положение. Не все кометы образовались вдали от Солнца, а существующие на этот счет теории придется если не переписывать, то изрядно подправлять.

Кроме того, ученым, поймавшим за хвост "не ту" комету, снова придется искать способ добраться до первоначального вещества. Как знать, может быть, в обозримом будущем за ним отправится второй зонд-пылесборник. АБ

Японский водопровод

Углеродные нанотрубки уже нашли массу приложений - от бронежилетов и водяных фильтров до электроники. Но работать с ними, как с обычными трубами, толком пока никто не умеет. Какая нанотрубка получилась, та и идет в дело. А если она слишком коротка или, наоборот, длинновата? Или нужно посередине сделать отвод, чтобы получился, например, транзистор? Решить такие задачи удалось японским специалистам.

Проще всего оказалось нанотрубки резать. Для этого рядом с местом будущего разреза к трубке присоединяют два электрода и пропускают по ним относительно большой ток (для однослойной нанотрубки достаточно десяти миллиампер). Под действием тока трубка, становясь все тоньше и тоньше, разделяется на две, с закрытыми идеальными углеродными "шапочками" концами.

Сварить две одинаковые нанотрубки тоже оказалось на удивление просто. Два конца соединяют "заглушками" и снова пропускают электрический ток. Когда ток достигает определенного порога (около шести миллиампер), нанотрубки срастаются, причем так быстро, что ученые пока не могут понять, как именно это происходит. Резка и сварка получаются просто идеально. Исследователям удалось разрезать, а затем снова сварить одну и ту же нанотрубку семь раз подряд без заметного ухудшения ее свойств.

Но если взять две нанотрубки разного диаметра, то сварить их уже не так-то просто. При достижении порогового значения тока нанотрубки вроде бы соединяются, но потом соединение быстро разрушается. Многочисленные попытки никак не приводили к успеху. Оказалось, что проблема связана с различиями в структуре соединений атомов углерода. У нанотрубок разного диаметра структура, как правило, разная. Поэтому без значительной перестройки связей соседних атомов углерода прочного соединения не получается.

Чтобы решить эту проблему, ученые использовали частички вольфрама. Вольфрам, будучи хорошим катализатором для углерода, помогает атомам найти оптимальные взаимосвязи и выстроить прочную структуру. С вольфрамовым катализатором за счет отжига удается получить плавное бесшовное соединение нанотрубок практически любого диаметра.

Разумеется, такая резка и сварка нанотрубок "вручную" под наблюдением электронного микроскопа хороша лишь для научных лабораторий, но как только она будет отработана, можно будет задуматься и о промышленном варианте. ГА

В тени экскаватора

Началась эта почти детективная история утром 30 января, с обрыва на участке оптоволоконной системы связи SEA-ME-WE 4 (SMW4) близ Александрии. Соединяющая Западную Европу с Азией и Ближним Востоком, SMW4 имеет общую протяженность почти в 20 тысяч километров, находясь преимущественно под водой. В тот же день примерно в том же районе

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Похожие книги