Смирнов Георгий Александрович - Западноевропейская наука в средние века: Общие принципы и учение о движении стр 16.

Шрифт
Фон

Здесь мы сталкиваемся с третьим, быть может, самым важным моментом, предопределившим радикальный пересмотр аристотелевской концепции движения, благодаря которому появилась возможность описать движение через систему переменных величин. Это окончательное введение Галилеем вместо целевого определения движения «поступательного». Со словом «движение» отныне однозначно

В историко-научной литературе было подвергнуто справедливой и беспощадной критике ходячее представление о том, будто основная заслуга Галилея состояла в обращении от схоластических «умствований» к эмпирическому исследованию природы (см., напр.: [111]); в советской литературе подробный и аргументированный разбор (и опровержение) указанной точки зрения дан А. В. Ахутиным в книге «История принципов физического эксперимента от античности до XVII века» [10].

ассоциируется интуитивное представление о преобразовании регулярной, единообразно повторяющейся процедуре перехода от одной точки к другой, совершающейся спонтанно и не требующей никаких «сил» для своего осуществления. «Непрерывная» последовательность переходов начинает играть роль основной, первичной онтологической схемы, придя на смену господствовавшему ранее представлению о неподвижных самих по себе субъектах-вещах, которым приписывается предикат движения. В работах Галилея интуиция последовательности, взращенная на мертонской почве, освобождается от ограничений, налагавшихся на нее самим фактом существования внутри концептуальных рамок аристотелизма. Мертонская теорема о средней скорости, существенным образом опиравшаяся на предположение, что движение происходит в течение конечного промежутка времени, заменяется у Галилея теоремой о приращении скорости пропорционально времени движения, подразумевающей неограниченное прибавление все новых и новых временных промежутков. Правда, Галилей практически всегда имеет дело с ограниченными отрезками, но это так, поскольку его задача обычно состоит в установлении пропорциональных отношений между скоростями, временами и расстояниями. Они и берутся поэтому как ограниченные отрезки или величины. Но многие места из его работ, в частности доказательство теоремы 1 (третьего дня) в «Беседах» , позволяют судить о подлинной основе его концепции движения. В этой теореме утверждается, что «если равномерно движущееся тело проходит с постоянной скоростью два расстояния, то промежутки времени прохождения последних относятся между собой как пройденные расстояния». Уже сама формулировка теоремы показывает, что Галилей рассматривает движение тела как слагающееся из частей. Так и начинается доказательство: «Пусть тело, движущееся с постоянной скоростью, проходит два расстояния АВ и ВС, и пусть время, потребное для прохождения АВ, представлено линией DE, а для прохождения ВС линией EF» [21, 235]. Построение, которое делает Галилей в процессе доказательства, выявляет два момента в его представлении движения, несвойственные средневековью. «Продолжим, пишет он, в обе стороны как расстояние, так и время до G, Н и I, К и отложим на линии AG произвольное число частей, равных расстоянию АВ, а на линии DI столько же частей, равных времени DE; далее отложим по другую сторону линии СН любое число частей, равных расстоянию ВС, а на FK столько же частей, равных времени EF» [Там же] (Подчеркнуто нами. Авт.). Построение иллюстрируется у Галилея чертежом:

Не разбирая дальнейшего хода доказательства, в котором важна лишь кратность числа отрезков времени и расстояния оно целиком основывается на евклидовом определении пропорциональности, обратим внимание на те допущения, которые лежат в его основе. Во-первых, движение, т. е. и время, и проходимое расстояние, изображается неограниченной прямой. Хотя Галилей и говорит, что он продолжает расстояние, как и время, в обе стороны до определенных точек, но ведь эти точки есть концы произвольного числа равных частей, отложенных на линии. Тот факт, что на продолжении линии можно взять любое число равных отрезков, говорит о ее неограниченности. Во-вторых, части, из которых складывается движение, не определяются путем деления наперед заданного ограниченного отрезка, изображающего целое движение, а задаются произвольно, так что движение изображается посредством многократного полагания произвольно выбранного отрезка, играющего роль единицы измерения.

При таком взгляде на движение концепция целевой причины утрачивает всякий смысл. Модель «счета», напротив, оказывается единственно возможным способом истолкования движения, способом столь естественным и самоочевидным, что в физике нового времени не возникает проблемы его обоснования, а основные усилия затрачиваются на то, чтобы на основе разработки соответствующих формальных средств детализировать эту модель, сделав ее пригодной для объяснения конкретных видов движения разнообразных физических объектов.

Литература

2. Абеляр Петр. История моих бедствий. М., 1959.

3. Августин. Исповедь//Богословские труды. М., 1978. Т. 19.

4. Августин. Творения. 3-е изд. Киев, 1914. Ч. 2.

4а. Августин. Творения. 2-е изд. Киев, 19051907. Ч. 34.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Популярные книги автора