«Близнецы» триады легких платиноидов похожи друг на друга как две капли воды. Но вместе с тем у каждого из них есть свои особенные черточки. Например, соли родия, как правило, отличаются розово-красным цветом. Именно потому элемент и получил свое название: «родон» по-гречески значит «роза». В остальном родий родствен своим собратьям по триаде. Он очень пассивен химически: не растворяется в кислотах и очень слабо в «царской водке». В растворимую форму переходит лишь при нагревании с дымящей серной кислотой, а также с расплавленными гидросульфатами щелочей, перекисью натрия, перекисью бария. Чтобы окислить родий на воздухе, нужно нагреть металл до температуры красного каления.
В мелкораздробленном состоянии металлический родий легко растворяет газы, и с этим связаны его каталитические свойства.
Триаду легких платиноидов завершает палладий, названный так в честь малой планеты Паллады. По способности к механической обработке он превосходит не только собратьев по триаде, но и все без исключения металлы платиновой группы. Как и родий, но намного интенсивнее, палладий поглощает газы: при 20 градусах он способен впитать в себя до 800 объемов водорода. Эта способность объясняет его высокую каталитическую активность. Среди платиноидов палладий считается химически наиболее активным. При нагревании на воздухе он дает окислы Pd2O и PdO. Палладий растворим в «царской водке» и в азотной кислоте.
Триаду тяжелых платиноидов открывает осмий. Это самый тяжелый металл: у него непревзойденный по величине удельный вес 22,48. Обладая благородной инертностью, осмий тем не менее легко растворим в азотной кислоте, особенно в дымящей.
На воздухе осмий постепенно окисляется в четырехокись OsO4. Четырехокись наиболее характерное соединение осмия. Она обладает резким запахом, которому металл обязан своим названием (по-гречески «осмо» «запах»). Четырехокись осмия способна возгоняться в виде почти бесцветных прозрачных игл. Пары ее ядовиты. Интересно, что мелко раздробленный осмий вспыхивает в атмосфере серных паров, как спичка, образуя OsS2. При комнатной температуре фтор не действует на осмий; реакция протекает только при нагревании. При этом получается смесь фторидов, среди них OsF8.
Между осмием и платиной находится иридий. Его «благородное происхождение» не подлежит никакому сомнению. Он еще больше, чем его соседи по триаде, устойчив к кислотам. Сплавленный иридий неприступен для «царской водки»; лишь в состоянии тончайшего раздробления он медленно растворяется в ней. Галогены, сера и кислород взаимодействуют с иридием только при температуре красного каления. Соли иридия имеют самую различную окраску, от этой пестроты и происходит название иридия: «ирис» по-гречески «радуга».
Платина и ее спутники нашли достойное применение своим качествам, особенно для облагораживания сплавов. Международные эталоны метра и килограмма сделаны из сплава платины (90 процентов) и иридия (10 процентов). Иридий, отличающийся необыкновенной твердостью, идет на изготовление электрических контактов для магнето в двигателях внутреннего сгорания, на иридирование поверхностей для придания им прочности и стойкости. Чтобы изготовить кислотоупорную посуду, не боящуюся даже «царской водки», прибегают к услугам родия. В сплавах же с платиной он превосходный катализатор. Не менее важным катализатором служит палладий, дающий возможность вести химические процессы при относительно низких температурах и давлениях. Соли осмия находят
применение в минералографии, медицине, для обработки биологических препаратов перед микроскопированием.
Итак, химическая стойкость вот что отличает членов «благородного семейства». В этом смысле вполне сравнимы между собой платиноиды с одной стороны, а с другой золото и серебро. У всех у них есть и другие полезные свойства, например тугоплавкость, пластичность, красивый внешний вид. Наконец, одним из важнейших качеств является способность, особенно у некоторых платиноидов, ускорять химические реакции. За все это и называют люди наши металлы драгоценными.
Валентность, равная нулю
И у него был повод для сомнения.
В 1785 году он проделал довольно простой опыт. Прежде всего Кэвендиш удалил из воздуха углекислый газ. На оставшуюся смесь азота и кислорода он подействовал электрической искрой. Азот, реагируя с кислородом, давал бурые пары окислов азота, которые, растворяясь в воде, превращались в азотную кислоту. Эта операция повторялась многократно.
Однако немного менее одной сотой части объема воздуха, взятого для опыта, оставалось неизменной. К сожалению, этот эпизод был забыт на многие годы.
Путь к определению атомных и молекулярных весов газов лежал через определение их плотностей.
В 1892 году английский физик Рэлей измерял удельный вес азота. К своему удивлению, он обнаружил, что удельный вес азота воздуха равен 1,257 г/л, а удельный вес азота из химических соединений: азотнокислого аммония, закиси и окиси азота, мочевины только 1,251 г/л. Рэлей повторял опыты, брал различные вещества, содержащие азот, но результат был тем же самым. Шесть тысячных грамма вес блохи. Но эти шесть тысячных грамма не могли быть ошибкой опыта, ибо техника измерений уже в то время позволяла оперировать с гораздо меньшими величинами.