Соли этой кислоты тиосульфаты являются уже более устойчивыми соединениями. Из них наибольшее практическое применение имеет тиосульфат натрия; его химическая формула Na2S2O3.
Поскольку в тиосульфате содержится отрицательно двухвалентная сера, он обладает восстановительными свойствами, что позволяет использовать его для связывания таких активных окислителей, как хлор. С этой целью тиосульфатом пользуются во время отбелки тканей для удаления избыточного хлора.
Но тиосульфат натрия известен не только как антихлор.
Каждый, кто занимался фотографированием, замечал, что иногда фотографии от действия света или при длительном
хранении покрываются бурыми пятнами. В таких случаях говорят, что фотография «недозакрепилась», то есть подверглась недостаточной обработке фиксирующими материалами.
Эмульсия фотопластинки или пленки после проявления содержит неразложившееся бромистое серебро, для удаления которого пластинка погружается в фиксаж, то есть обычно в раствор тиосульфата (в фотографии его называют гипосульфитом). Роль гипосульфита заключается в том, чтобы перевести нерастворимые соединения серебра в растворимые комплексные соединения. В результате фиксирования изображение становится устойчивым к действию света и не изменяется при длительном хранении.
Тиосульфат натрия находит применение и в медицине. Он является противоядием при отравлении мышьяком и цианидами. Наружно его употребляют при лечении чесотки и при тяжелых ожогах.
Тиосульфат натрия обладает способностью быстро реагировать с йодом. Эта реакция послужила основанием для йодометрии одного из важнейших методов объемного анализа, имеющего большое значение в аналитической химии. Реакция взаимодействия йода с тиосульфатом записывается следующим образом:
J2 + 2Na2S2O3 = 2NaJ + Na2S4O6.
Мы обращаемся к высокомолекулярным соединениям и вспоминаем серосодержащие полимеры, которым еще предстоит сказать веское слово. Мы говорим о тиоколе и неорганические каучуки на основе серы привлекают наше внимание, ведь проблема устойчивости резиноподобных материалов становится все более острой в современной технике. Люминесцентные и теплочувствительные краски, люминофоры для тонких научных исследований ждут новых соединений серы.
Надежным помощником ученых оказываются радиоактивные изотопы серы и в первую очередь сера-35. Этот изотоп дает возможность изучать детальный механизм разнообразных химических процессов, в которых участвует сера, позволяет приоткрыть завесу над ее ролью в организмах растений и животных, помогает во многих сложных экспериментах. Меченая сера один из самых перспективных радиоизотопов.
В истории почти каждого химического элемента есть свои замечательные вехи, научные открытия, после которых значение его возрастает неизмеримо. Открытие деления урана, обнаружение ценнейших полупроводниковых свойств у германия, доказательство сверхпроводимости и сверхтекучести жидкого гелия Такой перечень можно продолжить для очень многих представителей периодической системы. «Бенефисом» серы явилось промышленное получение серной кислоты. Но вряд ли будет фантазией предположить, что сере еще суждено пережить второе рождение.
Рождающие соли
Они очень активны, эти элементы: соединяясь с большинством металлов, они дают соли. Поэтому их назвали галогенами, что в переводе на русский язык означает «солероды».
Группа солеродов состоит из пяти элементов: фтора, хлора, йода, брома и астата. Последний, самый тяжелый галоген астат в природе фактически не встречается; он был получен в 1940 году искусственным путем.
Галогены расположены в седьмой группе периодической системы. Известно, что чем правее и выше находится неметалл в периодической таблице, тем с большей энергией стремится он заполнить свой внешний электронный слой до восьми электронов. Не удивительно, что галогены очень реакционно-способны; они сильные окислители. Расположенные в таблице Менделеева правее всех других неметаллов, галогены образуют своеобразный активный «полюс» периодической системы.
Среди галогенов строго соблюдается и другая закономерность: чем выше стоит элемент в таблице, тем он более активен.
Фтор это газ с очень резким ядовитым запахом. Он самый сильный окислитель среди всех элементов. Молекула фтора, как и всех галогенов, состоит из двух атомов. Атомы фтора связаны между собой очень сильно. Чтобы превратить фтор в жидкость, необходима температура 187 °C.
Хлор тоже газ с очень неприятным запахом, но он менее агрессивен, чем фтор. В то время как фтор бесцветен, цвет хлора зеленовато-желтый. Отсюда и его название: «хлорос», по-гречески «зеленый».
Следующий представитель семейства галогенов, бром, жидкость, тяжелая, маслянистая, красно-бурого цвета. Пары брома ядовиты, у них неприятный резкий запах. Название «бром» в переводе с греческого означает «зловонный». Бром менее активен, чем хлор.
Последний существующий в природе галоген йод представляет собой летучие темно-бурые кристаллики со знакомым всем специфичным запахом. Каждый предыдущий галоген вытесняет последующий из его соединений.