Затронутые выше вопросы теории и практики солнечных элементов подробно, доступно и вместе с тем достаточно строго освещены в предлагаемой читателю научно-популярной книге профессора Μ. М. Колтуна. Автор книги известный исследователь, разработавший ряд новых солнечных элементов и батарей, создавший системы просветляющих, радиационно стойких и теплоотражающих оптических покрытий, защищающих солнечные элементы от воздействия радиации и температурных перегревов даже при работе около горячей Венеры или на поверхности Луны.
В настоящей книге изложены физические основы и принцип действия солнечных элементов из разных
материалов, описаны разнообразные конструкции элементов, представлены их основные оптические и электрофизические характеристики.
H. С. Лидоренко
Глава 1
СОЛНЕЧНОЕ ИЗЛУЧЕНИЕ В КОСМОСЕ И НА ЗЕМЛЕ
Состав электромагнитного излучения, испускаемого Солнцем, и природа происходящих при этом физических явлении
Солнце представляет собой удаленный от Земли на расстояние 149,6 млн км термоядерный реактор, излучающий энергию подобно абсолютно черному телу при температуре 5785 К (приближение, которое наиболее часто используется). Энергия поступает на Землю главным образом в форме электромагнитного излучения в спектральном диапазоне от коротких радиоволн длиной 30 м до рентгеновских лучей с длиной волны 10-10 м. Наибольшая часть энергии излучения Солнца сосредоточена в видимой и инфракрасной областях спектра.
Почти пять миллиардов лет в недрах Солнца происходят термоядерные реакции превращение ядер водорода в ядра гелия, приводящие к освобождению огромного количества энергии. Ведь в глубине Солнца температура достигает 1520 млн град. Ежесекундно 600 млн т водорода в недрах Солнца превращаются в гелий, однако масса Солнца столь велика, что за миллиарды лет она уменьшилась лишь на доли процента. Масса Солнца составляет 2×1027 т, что более чем в 330 тыс. раз больше массы Земли!
Существует две основных последовательности ядерных превращений водорода в гелий в ядре Солнца. Один из этих процессов углеродно-азотный цикл, в котором в конечном счете ядро атома углерода поглощает четыре протона, излучает два позитрона (положительно заряженные античастицы по отношению к электрону) и превращается в нестабильное ядро атома кислорода. Затем ядро атома кислорода распадается на ядра углерода и гелия. Таким образом, восстанавливается первоначальное ядро углерода, и общий эффект состоит в превращении четырех протопоп в одно ядро гелия,
Вторая последовательность это протон-протонная реакция, в которой два протона сталкиваются и излучают позитрон и нейтрино при образовании дейтерия, тяжелого изотопа водорода, в ядре которого существуют как нейтрон, так и протон. Другой протон добавляется к дейтерию, образуя легкий изотоп гелия, гелий-3. Затем два ядра гелия-3 объединяются и образуют одно ядро обычного гелия, гелия-4, и два свободных протона. Результат здесь снова состоит в объединении четырех протонов в ядро гелия. Количество высвобождающейся энергии примерно в миллион раз больше энергии, выделяемой в химической реакции горения.
Земля движется вокруг Солнца по эллиптической орбите. Небольшая вытянутость орбиты порождает годовые колебания интенсивности солнечного излучения, достигающего Земли. Наклон (угол относительно нормали к плоскости орбиты Земли) оси собственного вращения Земли, близкий к 23,5°, приводит к сезонным изменениям высоты Солнца над земным горизонтом. Диаметр Солнца составляет около 1,39×109 м. C Земли Солнце выглядит диском с угловым размером 31o59. Это средний угловой диаметр; его годовое изменение составляет ±1,7 %.
Солнце имеет непрерывный спектр излучения, пересекаемый в некоторых местах темными линиями поглощения (так называемыми фраунгоферовыми линиями), влиянием которых при энергетических расчетах можно пренебречь. Распределение энергии в спектре Солнца весьма неравномерно, и истинная кривая спектральной плотности потока как внеатмосферного, так и наземного солнечного излучения имеет довольно сложный вид (рис. 1.1).
Интегральная плотность потока солнечного излучения, падающего нормально на поверхность, может быть определена интегрированием спектральной плотности в диапазоне изменения длины волны от нуля до бесконечности. Эта величина для околоземного космоса изменяется незначительно, поскольку расстояние от Земли до Солнца при ее движении по орбите отклоняется лишь в пределах 98,3101,7 % от среднего расстояния, что приводит к соответствующим сезонным изменениям плотности потока солнечного излучения.
Анализ наземных измерений солнечной постоянной показывает, что среднее квадратическое отклонение результатов ее определения, связанное с явлениями, происходящими на Солнце, составляет ±0,1 %, а с возможными колебаниями поглощения радиации внутри орбиты Земли ±0,14 %. Высотные измерения показали, что во вторую половину 22-летнего солнечного цикла солнечная постоянная изменилась не более чем на 0,75 %. Дальнейшие исследования с помощью аппаратуры, установленной на ориентируемых космических станциях, позволят определить изменения солнечной постоянной за больший период времени.