Ефим Вульфович Крейнин - Нетрадиционные углеводородные источники: новые технологии их разработки. Монография стр 11.

Шрифт
Фон

Большая часть угольного метана (7580 %) находится в сорбированном состоянии, и главная задача для его извлечения заключается в разрыве прочной и устойчивой физико-химической связи «уголь-метан», что возможно только при интенсивном разупрочнении угленосной толщи (прежде всего, угольного пласта) и его разгрузке. В связи с этим, на наш взгляд, много практически полезного по созданию в угольном пласте искусственных коллекторов (микро- и макроразмеров) как необходимых конструктивных элементов подземных газогенераторов накоплено в подземной газификации угля. И задача метаноугольной подотрасли максимально использовать этот накопленный инженерный потенциал.

1.5.1. Гидравлический разрыв угольного пласта

Первые эксперименты по разупрочнению (разрыву) угольного пласта были проведены в 1954 г. на Лисичанской станции «Подземгаз», на пласте L6, на глубине 150 м [33].

Естественная газопроницаемость угольного пласта на этой глубине составляла всего1,5 мД, и, в соответствии с теорией течения дутья в неизменяемой среде, для нагнетания в вертикальную скважину 150200 нм3/ч воздуха потребовалось бы давление в сотни атмосфер. При давлении же 2,03,0 МПа приемистость скважины составляла лишь 1020 нм3/ч, и поток дутья между соединяемыми вертикальными скважинами был настолько мал, что противоточное перемещение очага горения либо вообще было невозможно, либо затянулось бы на очень длительное время.

Однако в данном случае при давлении 4,24,5 МПа было зафиксировано резкое увеличение приема дутья скважиной, в соответствии с рис. 5. Под действием давления, немного превышающего давление вышележащих горных пород на глубине 150 м, происходит искусственное расширение естественных микротрещин и микропор. Это явление было названо «разрывом угольного пласта».

Рис. 5 Зависимость приема дутья скважиной от давления: 1 экспериментальная кривая; 2 расчетная кривая

Начиная с 1956 г., при подземной газификации угольных пластов стали применять их разрыв с помощью жидкостей и закрепление созданных щелей кварцевым песком [34, 35].

Таким образом, Всесоюзный научно-исследовательский институт использования газа в народном хозяйстве (до 1966 г. Всесоюзный научно-исследовательский институт подземной газификации угля) впервые в мировой практике в 1954 г. начал применять пневматический и гидравлический разрыв угольного пласта с целью его разупрочнения и существенного повышения газопроницаемости.

Первое опробование процесса гидроразрыва угольного пласта в Кузбассе было проведено в 1960 г., на Южно-Абинской станции «Подземгаз» (на чистой воде и без песка). На опытном газогенераторе 4 было пробурено пять вертикальных скважин на пласт «VI Внутренний» и на глубину 240 м [10]. Одной из основных целей эксперимента было соединение всех пяти скважин в один канал.

Гидроразрыв угольного пласта на этой глубине, как правило, начинался при давлении 8,08,5 МПа. График

зависимости расхода воды от давления ее нагнетания аналогичен кривым на рис. 5.

Для иллюстрации процесса гидроразрыва угольного пласта «VI Внутренний» на рис. 6 представлено изменение основных его параметров на одной из скважин.

Рис. 6 Изменение давления и расхода воды во времени при гидроразрыве угольного пласта «VI Внутренний»

Через 2 часа давление нагнетания воды стало падать, а расход расти. Щель гидроразрыва достигла соседней открытой скважины, удалённой на 25 м от нагнетательной скважины. По прошествии 3 часов давление нагнетания упало практически до нуля, а темп закачки вырос с 200 до 700 л/мин

Механизм и развитие процесса гидравлического разрыва угольного пласта водой целесообразно рассмотреть на рис. 7.

Рис. 7 Зависимость расхода воды, нагнетаемой в угольный пласт, от давления

Здесь представлены параметры процесса нагнетания воды через одну из скважин в угольный пласт «VI Внутренний», имеющий на глубине 240 м мощность 1,8 м и газопроницаемость 45 мД. С увеличением количества воды, нагнетаемой в скважину, росло давление нагнетания. Однако характер этой зависимости был различным по участкам графика. Можно выделить три характерных участка.

На первом участке прием воды с ростом давления увеличивается по прямой. Это свидетельствует о том, что вода движется в угольном пласте (в этом интервале изменения давления нагнетания) по природным порам и трещинам без их структурного изменения.

На втором участке восходящая ветвь кривой поднимается все круче и круче по мере роста давления нагнетания. Это связано с началом изменения структуры природных пор и трещин, что вызывает более быстрый, чем на первом участке, рост приема воды скважиной при увеличении давления нагнетания.

В пределах третьего участка прием воды увеличивается пропорционально росту давления нагнетания. Однако угол наклона прямой здесь во много раз превосходит угол наклона прямой на первом участке графика. Это объясняется движением воды в угольном пласте теперь уже в основном по новым трещинам и щелям, гидравлическое сопротивление которых значительно меньше, чем в нетронутом угольном пласте неизменяемой структуры.

Прием воды начинался только при давлении 2,5 МПа, так как в момент испытаний над горизонтом нагнетания

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке