Генно-инженерные технологии
Открытие генетической рекомбинации показало, что генетический текст (ДНК) можно в каком-то месте разрезать и в этот разрез вставить фрагмент любого генетического текста из того же самого или другого организма. Как вы уже знаете, это умеет делать вирус. Дело оставалось за малым: понять, как это смогут сделать генные инженеры.
Каким же образом вирус разрывает генетический текст? Должен быть какой-то инструмент, «ножницы», нарушающие целостность нити ДНК.
И такой инструмент был обнаружен. Им оказались ферменты рестрикции (рестриктазы). В данном случае ученые нашли ферменты, которые нарушали целостность молекулы ДНК в определенном месте.
Рестриктазы узнают в молекуле ДНК коротенькое слово генетического текста из четырех восьми определенных букв и вносят в это место ДНК двухцепочечный разрыв.
Они были обнаружены в бактериях, но оказалось, что подобно генетическому коду многие биологические процессы универсальны, и ферментам рестрикции было совершенно все равно, чью ДНК и где разрезать. Они не имели видовой специфичности и прекрасно работали как в клетке, так и вне ее, в пробирке. За открытие рестриктаз в 1978 году американцы Даниел Натане и Хамилтон Смит вместе со швейцарским генетиком Вернером Арбером получили Нобелевскую премию по медицине и физиологии.
Именно эти два свойства генетического кода ДНК и ферментов универсальность и сохранение свойств вне клетки, в пробирке положили начало всем биотехнологическим и биомедицинским достижениям XX и XXI веков.
Дезоксирибонуклеиновая кислота (ДНК) бактериальной клетки ничем не отличается от ДНК клетки человека, кроме содержания генетического текста. Давайте представим себе генетический текст бактерий как текст тоненькой брошюрки, а генетический текст человека как текст многотомного издания. Но если мы оба текста разрежем на отдельные буквы, слова и даже предложения, то, перемешав, сможем составить новый текст с тем смыслом, который захотим ему придать. Помню, в детстве я слышал историю о том, как один заключенный, прочитав много детективов, из отдельных фраз и фрагментов прочитанного составил свой детектив, который пользовался большой популярностью. Так и здесь: если разрезать два генетических текста, а потом их фрагменты смешать в одной пробирке вне клетки, вне организма, то за счет рекомбинации два разных фрагмента могут объединиться в один. И неважно, что один фрагмент ДНК взят из бактерии, а другой из клетки человека. Рекомбинация все равно произойдет, и образуется новая, синтетическая молекула, в которой часть будет представлена бактериальным геномом, а часть фрагментом генома человека.
Потом этот искусственно созданный геном, содержащий ген человека, мы можем ввести в бактерию. В результате в бактериальной клетке прекрасно начнет работать ген человека, который мы туда вставили с помощью технологии рекомбинантной ДНК; более того, он будет передаваться по наследству и окажется у всех многочисленных потомков этой бактерии.
Перенос генов и начало биотехнологии
Немного позже биохимик Герберт Бойер и генетик Стенли Коэн воспользовались открытием
Пауля Берга и в середине 1970-х годов впервые перенесли ген инсулина человека в бактериальную клетку. Задача состояла в том, чтобы заставить ее синтезировать инсулин человека белок, который можно было бы использовать для лечения больных диабетом.
С практической точки зрения главным достижением Г. Бойера и С. Коэна было открытие того, что любой ген человека можно переместить в подходящую бактериальную клетку, и бактерия будет безропотно производить белок, закодированный им, вне организма человека.
Рис. 4. Перенесение гена инсулина человека в бактериальную клетку
Наверное, может возникнуть вопрос: а зачем переносить ген именно в бактериальную клетку? Ведь все это есть и в клетке человека! Да, конечно, но... Для выращивания бактериальных клеток используются очень дешевые питательные среды отходы пищевого производства, перегонки нефти, газ. Бактерия делится примерно один раз в двадцать тридцать минут, а клетка человека раз в несколько дней. Представьте себе, что вы на микробиологическую чашку Петри посадили одну-единственную клетку, в которую ввели одну-единственную копию синтетического гена. Назавтра, достав из инкубатора чашку Петри, вы увидите небольшую, но хорошо заметную глазом точку размером в один-два миллиметра, ведь там уже находится больше 107 клеток! Десять миллионов копий гена за одну ночь можно получить в этой бактериальной колонии, которая состоит из потомков одной-единственной клетки и получила название клон (а сам процесс стали называть клонированием). Представляете, сколько инсулина человека смогут производить десять миллионов клеток!
Клонирование это получение точной копии в поколениях. Само слово «клон» по-гречески означает «ветвь», «отпрыск», «потомок». Более ста лет назад в США термин «клон» (ветвь) пытались ввести в растениеводстве, чтобы различать сельскохозяйственные растения, полученные вегетативным путем (из укорененных частей растений), а значит, точные копии. Ведь при опылении одного растения другим уже происходит оплодотворение смешиваются два генома, получается новый геном.