Коллектив авторов -- Словари и энциклопедии - Оружие будущего:Тайны новейших военных разработок стр 25.

Шрифт
Фон

Микроволновое оружие

Однако это оружие действует во всех направлениях: оно поражает и ослепляет не только электронные средства противника, но и свои собственные. Естественным шагом в его развитии стала разработка генераторов микроволновых колебаний, которые американские специалисты считают одним из перспективных видов космического оружия.

В малых дозах микроволновое излучение используется медиками в целях лечения для прогрева отдельных участков человеческого тела (УВЧ-терапия). Большие дозы микроволнового излучения поражают как человека, так и технику. Уже созданы генераторы микроволнового излучения, позволяющие концентрировать мощность в сотни мегаватт. Главная проблема в том, как собрать радиоволны в узкий пучок: явление дифракции приводит к тому, что даже у высококачественной параболической антенны диаметром 15 м пучок миллиметровых волн имеет расходимость 10-4 рад. При этом на расстоянии 1000 км диаметр такого пучка будет составлять уже 100 м. Даже от генератора мощностью в 1000 МВт плотность потока при этом падает до 10 Вт/см2, что не может нанести ракете серьезного вреда. Чтобы использовать микроволновое излучение как оружие ПРО, необходимо сильно увеличить частоту излучения и повысить в десятки раз мощность генераторов.

Однако микроволновое излучение может использоваться и для поражения наземных целей. Атмосфера Земли имеет несколько «окон прозрачности» в радиодиапазоне: кроме основного «окна» (длина волны λ = от 20 м до 1 см) имеются еще «полупрозрачные окна» на λ = 8 и 4 мм. Волны короче 1 мм поглощаются парами воды. Сконцентрировав на земной поверхности пучок миллиметровых волн мощностью около 1000 МВт, можно создать поток тепла, достаточный для воспламенения горючих предметов.

Большую опасность несет микроволновое излучение для человека. В обычном состоянии наше тело выделяет около 100 Вт тепла. Считается опасным для живого организма, если поглощенная извне мощность превышает его собственное энерговыделение. Достаточно мощное микроволновое излучение может вызвать у человека ожог или тепловой удар. Тепловое поражение нашего организма происходит при интенсивности падающего излучения порядка 1 кВт/м2. В принципе, такой уровень достижим уже сейчас. Как известно, электромагнитные волны это колебания электрического и магнитного полей, векторы которых перпендикулярны друг другу и направлению распространения волн. Если тело человека ориентировано своей длинной осью параллельно вектору электрического поля, а фронтальной плоскостью перпендикулярно вектору магнитного поля (т. е. человек стоит боком к приходящему излучению), то оно будет эффективно поглощать излучение с частотой 70100 МГц (длина волны = 34 м), для которого оно является полуволновым диполем и активно резонирует с падающей волной. На более высоких частотах человеческое тело поглощает излучение в 510 раз менее эффективно, чем на резонансной частоте. На более низких частотах поглощение пренебрежимо мало.

Итак, возможность создания космического микроволнового оружия, способного поражать космические, воздушные и наземные цели, вполне осуществима.

Кинетическое и пучковое оружие

излучения. Космический вакуум дает удобную возможность использовать в качестве оружия и вещественные носители энергии, движущиеся с большой скоростью: ракеты-перехватчики, самонаводящиеся высокоскоростные снаряды, разгоняемые в электромагнитных ускорителях, и микроскопические частицы (атомы водорода, дейтерия), также ускоренные электромагнитным полем. Чтобы пробить тонкостенные оболочки топливных баков достаточно, чтобы относительная скорость снаряда и мишени составляла порядка нескольких километров в секунду. Самым подходящим считается значение порядка 10 км/с, которое позволяет уверенно перехватывать МБР как на активном, так и на баллистическом участке их траектории.

Несмотря на большую легкость обнаружения ракет противника на активном участке их траектории по выделяемому ракетным факелом теплу, считается более перспективным распологать кинетическое оружие на станциях баллистического участка на высоте около 1000 км. При этом время прохождения ракетами второго участка довольно велико (около 1000 с против 100 с на активном участке), а траектория их движения легко рассчитывается, что позволяет создать более легкие снаряды-перехватчики и значительно увеличить боезапас космической станции. Это преимущество тем более значимо, что количество целей на баллистическом участке (включая ложные) возрастает на порядок.

Энергозатраты кинетического оружия, в принципе, сравнимы с теми, что упоминались выше для лазерного оружия порядка 100 Мдж/выстрел. Это легко определить исходя из того, что кинетическая энергия снаряда, имеющего массу 1 кг и скорость 10 км/с, составляет 50 МДж. В принципе, можно уменьшить эту величину за счет выбора геометрии относительного движения снаряда и мишени, т. к. средняя скорость самих орбитальных станций, на борту которых будет находиться оружие, уже составляет порядка 8 км/с.

Из разработанных к настоящему времени возможностей придания массивным телам больших скоростей внимания заслуживают следующие:

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке