Альтов Генрих Саулович - И тут появился изобретатель стр 39.

Шрифт
Фон

С алмазами чуть сложнее. На них приходится напылять тонкий слой железа. А далее все так же: действуют магнитным полем, укладывая пирамидки вершинами вверх.

Эти задачи похожи на задачу 45 об охотнике. Чтобы поле действовало на вещество, надо добавить какое-то другое вещество, умеющее отзываться на действие поля. К охотнику надо добавить еще одно «вещество», восприимчивое к звуковому полю

В задаче 24 об укладке фруктов надо использовать правило разрушения веполей: между двумя сталкивающимися плодами должно находиться третье вещество, похожее на плод. Например, мягкий шарик. Бросим в коробку десятка два таких шариков, они будут смягчать удары. Коробка установлена на вибрирующем столе, поэтому легкие шарики всегда находятся в верхнем слое, отважно принимая на себя удары падающих плодов.

Тут, правда, возникает вопрос: а как быть с этими шариками, когда коробка наполнится? Не перекладывать же их вручную в следующую коробку Задачи на перемещение объектов вам хорошо известны. В шарик встраивают магнитную пластинку. Над коробкой помещают электромагнит. Когда коробка наполнится, включают электромагнит, и шарики выпрыгивают из коробки. Конвейер убирает полную коробку и ставит на ее место пустую. Электромагнит выключают, шарики прыгают в коробку, можно подавать плоды.

Задача 32 о железном порошке, засыпанном в полимер, как вы, наверное, заметили, очень похожа на рассмотренный в третьей главе пример со смазкой. И ответ тот же: нужно использовать соединение железа, которое распадается в горячем полимере.

Сложнее задача 38 о нефтепроводе. Жидкости,

идущие по трубопроводу «стык в стык», отделяют друг от друга прочным резиновым шаром-разделителем. Что ж, применим оператор РВС. Начнем мысленно уменьшать размеры шара. Вместо одного большого шара множество футбольных мячей. Или теннисных. Или еще меньше дробинок В этой идее уже что-то есть: пробку и в самом деле можно сделать из множества дробинок, плавающих в жидкости. Выдано даже авторское свидетельство на такую пробку. Все логично: жесткая пробка должна смениться пробкой динамичной, это соответствует общей тенденции развития технических систем.

А если продолжить мысленный эксперимент? Перейдем от дроби к еще более мелким частицам молекулам. Возникает идея пробки из жидкости или газа. Газовая пробка не сможет быть разделителем нефть пройдет сквозь газ. А вот жидкая пробка возможна. Один нефтепродукт, например, керосин, затем водяная «пробка», а за ней другой нефтепродукт, скажем, бензин. У жидкой пробки огромные преимущества: она никогда не застрянет в трубопроводе и свободно пройдет через насосы промежуточных станций. Но и недостаток у этой пробки существенный. Нефтепродукты, идущие до пробки и после нее, будут проникать в жидкий разделитель. Головная и хвостовая части пробки постепенно смешаются с нефтепродуктами. Отделить эти нефтепродукты от воды трудно, на конечной станции пробку и попавшие в нее нефтепродукты придется выбросить.

Сформулируем ИКР: жидкое вещество пробки, прибыв в резервуар на конечной станции, должно само отделиться от нефти. Тут только две возможности жидкость становится твердым веществом и выпадает в осадок или превращается в газ и улетучивается. Переход в газ заманчивее: твердый осадок надо отфильтровывать, а газ исчезнет. Значит, нужно вещество, которое при высоком давлении (в нефтепроводе давление в десятки атмосфер) будет жидким, а при нормальном давлении газообразным.

Вспомните старый принцип: подобное растворяется в подобном. Нефть вещество органическое, а нам надо, чтобы пробка не растворялась в нефти. Следовательно, для пробки нужна неорганическая жидкость. Дешевая, безопасная, инертная по отношению к нефтепродуктам Имея столь подробный перечень примет, нетрудно найти подходящее вещество по справочнику. Обыкновенный аммиак обладает всеми интересующими нас качествами. Пробка из жидкого аммиака надежно разделит идущие по трубопроводу жидкости. В дороге пробка частично смешается с нефтепродуктами, но это не страшно: на конечной станции аммиак превратится в газ, а нефть останется в резервуаре.

После того, как мы придумали пробку из жидкости, можно смело браться за задачу 42 о корпусе корабля. По условиям задачи корпус должен стать гибким, подвижным. Что ж, давайте представим себе, что обшивка корпуса сделана из жидкости. Дикая, конечно, идея, но теперь у нас есть некоторый опыт превращения твердого в жидкое К тому же, оператор РВС и моделирование маленькими человечками ведут именно к этой идее.

Итак, вместо стального листа «лист» жидкости. Первая забота: как сделать, чтобы жидкость не разлилась? Придется с двух сторон поставить гибкие оболочки, например, из плотной резины. А чтобы вода не вылилась, нужно соединить оболочки перегородками. Получится стенка, собранная из резиновых грелок. Смешно Однако некоторые изобретатели считают, что примерно так устроена шкура дельфина. Были построены модели, обтянутые подобными оболочками. Выяснилось, что модели при буксировке испытывают пониженное сопротивление воды: гибкие оболочки создают меньше вихрей. Но все-таки искусственные гибкие покрытия работали намного хуже, чем шкура живого дельфина. Дельфин может изменять форму поверхности шкуры, приспосабливаясь к меняющимся внешним условиям. А искусственные покрытия были безжизненными, им не хватало подвижности, они не могли «играть», меняя форму. Возникла новая задача: как управлять формой каждого участка гибкого покрытия?

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Популярные книги автора