Фернандо Корбалан - Золотое сечение [Математический язык красоты] стр 2.

Шрифт
Фон

«Золотой» мир

решение этой загадки. Давайте посмотрим, что произойдет, если наложить несколько «золотых» прямоугольников на изображение лица прекрасной Моны Лизы:

Думал ли Леонардо да Винчи о золотом сечении, работая над своим шедевром? Это кажется маловероятным. Однако мы можем быть вполне уверены, что флорентийский гений придавал большое значение связи между эстетикой и математикой.

Мы еще вернемся к этому вопросу, а пока только заметим, что Леонардо делал иллюстрации к математической книге De Divina Proportione («О божественной пропорции»), написанной его хорошим другом Лукой Пачоли.

Леонардо, конечно, не единственный художник, в чьих работах встречается золотое сечение как в виде отношения двух сторон прямоугольника, так и в более сложных геометрических формах. Этот принцип в своих работах использовали многие художники последующих поколений, в том числе постимпрессионист Жорж Сёра и прерафаэлит Эдвард Бёрн-Джонс. В экстраординарной работе «Тайная вечеря» Сальвадора Дали золотое сечение также играет важную роль. Мало того, что полотно картины имеет размеры 268 на 167 сантиметров (почти идеальный «золотой» прямоугольник), так еще в центре картины изображен монументальный додекаэдр. Эта фигура является одним из правильных многогранников, которые можно вписать в сферу, и тесно связана с золотым сечением. Мы расскажем об этом в третьей главе.

Картина Жоржа Сёра «Купальщики в Аньере» (1884) представляет собой «золотой» прямоугольник. Некоторые из элементов картины также могут быть вписаны в «золотые» прямоугольники.

Давайте теперь обратимся к архитектуре, вершине прикладного искусства. Если золотое сечение и вправду создает некую гармонию во всех ее проявлениях, то, возможно, мы увидим это в геометрических формах самых известных в мире зданий. Хотя немного рискованно настаивать на таком заявлении. Золотое сечение действительно появляется во многих замечательных архитектурных творениях на протяжении всей истории человечества, таких как Великая пирамида или некоторые знаменитые готические соборы, но очень часто его присутствие практически незаметно. Тем не менее в некоторых случаях это вполне очевидно. Например, различные элементы фасада Парфенона, всемирно известного шедевра Фидия, представляют собой «золотые» прямоугольники.

Секрет розы

Теперь в каждом из квадратов мы проведем дугу, как показано на рисунке ниже. Радиус каждой дуги равен длине стороны соответствующего квадрата. В результате наш рисунок будет выглядеть следующим образом:

Эта элегантная кривая называется логарифмической спиралью. Она вовсе не является математическим курьезом наоборот, эта замечательная линия часто встречается в физическом мире: от раковины наутилуса

до рукавов галактик.

и в элегантной спирали лепестков распустившейся розы.

На примере королевы цветов мы вступаем в другую область, где тоже господствует золотое сечение: мир растений. Присутствие золотого сечения здесь неочевидно и требует введения нового математического понятия: последовательности Фибоначчи. Эта последовательность чисел, описанная итальянским математиком в XIII веке, начинается с двух единиц, а каждое следующее число равно сумме двух предыдущих. Вот первые пятнадцать чисел этой бесконечной последовательности:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610.

Частное от деления любого числа последовательности на предшествующее ему число будет стремиться к Ф, давая все более точное значение для каждого следующего числа последовательности. Покажем это:

1/1 = 1

2/1 = 2

3/2 = 1,5

5/3 = 1,666

8/5 = 1,6

13/8 = 1,625

21/13 = 1,615348

34/21 = 1,61904

55/34 = 1,61764

89/55 = 1,61818

144/89 = 1,61797

...

Ф = 1,6180339887

Для сорокового числа последовательности частное совпадает с «золотым» числом с точностью до четырнадцатого десятичного знака. Связи между золотым сечением и числами Фибоначчи многочисленны и неожиданны, позже мы рассмотрим их более подробно. Достаточно отметить, насколько невероятна эта связь между абстрактным царством чисел и физической реальностью.

Чтобы показать это, мы рассмотрим еще один цветок, внешне сильно отличающийся от розы, подсолнечник с семенами:

Первое, что мы видим, семена расположены по спиралям двух видов: по часовой стрелке и против часовой стрелки. Если мы посчитаем спирали по часовой стрелке и против часовой стрелки, то получим два, казалось бы, обычных числа: 21 и 34. Но эти два числа нам уже встречались.

В структуре цветка появились два идущих друг за другом числа из последовательности Фибоначчи. Если мы проведем такой же эксперимент с другим цветком подсолнечника, вполне вероятно, что мы получим другую пару чисел из этой последовательности, например, 55 и 89. Но это не единственный пример, когда мы можем увидеть золотое сечение в структуре растений. Другими примерами являются расположение веток деревьев, количество лепестков на многих цветах и даже форма листьев. Большая часть пятой главы будет посвящена изучению этой, казалось бы, магической связи между числами и органическими формами.

Иррациональные числа и числовые последовательности, Фидий и Леонардо, розы и подсолнечник все это образует «золотой мир», построенный на удивительном числе Ф.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке