Черняк Д. Л. - Всё есть процесс. Наука складности – 2 стр 6.

Шрифт
Фон

Это наблюдение о колебательной природе процесса даёт нам общее представление о месте процессов в описании окружающего мира: они описывают его волновую природу.

Мир объектов описан Аристотелем и с тех пор хорошо изучен. Современная наука, однако, уже давно столкнулась с недостаточностью этого описания и сформулировала теорию квантовой механики  корпускулярно-волнового дуализма. Но если про мир корпускул мы знаем почти всё, то что такое мир волн? Казалось бы, сегодня, зная уравнения Максвелла и Дирака, мы знаем про волны более чем достаточно, однако это не совсем так. Волновые математические модели настолько сложны, что не могут являться непосредственным описанием элементарных процессов в то время, как корпускулярные модели подчиняются правилам обычной арифметики. Эта невозможность, в свою очередь, нарушает дуалистический паритет, не позволяет ставить знак равенства между волной и частицей, как минимум, по показателю их сложности.

Уже одно это обстоятельство должно наводить нас на мысли о том, что волновые математические модели выражают не суть описываемых явлений, а лишь их проекцию на инородный им (в конкретном случае  корпускулярный) метод моделирования. Собственно, дифференциальное и интегральное исчисления  это и есть ни что иное, как доведённая до предела (т.е., выраженная в пределе дискретных бесконечно малых) корпускулярная модель. Достаточно ожидаемо то, что на своём пределе корпускулярная модель соприкасается с волновыми свойствами и позволяет их отражать. Но так же достаточно очевидно, что она от этого не перестаёт быть корпускулярной и не становится волновой. Это заставляет нас поставить вопрос о существовании принципиально иной модели, построенной на ином исчислении, при помощи которого волновые процессы будут описываться более естественным для них способом, по своей простоте сопоставимым с корпускулярной арифметикой.

Описанный Наукой складности взгляд на Мир, как на процесс является новым способом оценки явлений природы через их сущностную (качественную) характеристику и волновую природу. Способом, для которого «корпускулярно-волновое» описание является естественным, а не парадоксальным. В частности, в первом томе Науки складности мы уже касались вопроса интерпретации квантовой запутанности:

«Видя, что квантовая запутанность тесно связана с неопределённостью состояний частиц, мы можем сразу предположить, что этот эффект принадлежит к механизму Случайности, т. е., происходит не в Пространстве, а во Времени. Т.е., формально, это не две частицы синхронизируют состояния, это мы приходим в тут точку Буди, где состояние частиц синхронно»

 Наука складности, с.64

Одновременное применение двух методологий для познания окружающего мира позволяет достигать более глубоких результатов. Так, например, в наших повседневных рассуждениях мы легко объективируем явление «сознания», т.е. мы его называем, рефлексируем, обсуждаем. Но, одновременно, мы не можем его определить, потому что сознание  это процесс и его действие не может быть описано через объекты. Объективация позволяет нам ставить вопросы относительно него и держать в поле внимания, но постигать его гораздо удобнее через парадигму процессов.

Поскольку эти два описания мира  объектное и процессное, комплементарны, нам следует ожидать, что законы этих описаний и методология их применения будут разительно отличаться. В противном случае не было бы никакой причины для того, чтобы они разделялись  чего-то одного было бы вполне достаточно.

Всякий раз, когда учёным удаётся найти ракурс, в котором некоторые сложные процессы начинают выглядеть просто, это сулит серьёзное упрощение каких-либо вычислений и новые открытия. Вводя в научный дискурс методологию складности мы ожидаем именно этого эффекта.

Одним из отличий волнового способа описания Мира от объектного является то, что волновая часть  сущностная, т.е. корректный вопрос в отношении неё будет не «что видим?», а «что происходит?».

Например, по описанию всадника, который скачет по полю с шашкой наголо и громко кричит, мы можем решить, что это «казак на войне», а задав вопрос относительно того, что происходит, узнаем, что, на деле, это крестьянин гонит воров со своих посевов, а шашку он ранее рачительно припас при неизвестных обстоятельствах.

В чём польза Науки складности? Парадигма складности, требует задавать именно сущностный вопрос и, фактически, учит нас смотреть на предметы, как на волновые сущности. Этому взгляду нас должна учить квантовая механика, но она этого не будет делать, пока не оторвёт своё внимание от частиц, не справится с вопросами масштаба и не научится видеть квантовые явления в макромире. Мы предвидим, что через некоторое время это случится  немного быстрее с нашей помощью, или немного медленнее, своим, трудным академическим чередом.

Четверица

Если мы нарисуем процесс, который что-то во что-то преобразует (мы здесь намеренно воздерживаемся от терминологической объективации), то нам будет понятно, что на его входе что-то уменьшается, а на выходе прибавляется. Поскольку Вселенная, в целом, стремится к равновесию (в том плане, что она не любит никаких недостатков и переизбытков), а также, поскольку у нас есть диалектический закон единства и борьбы противоположностей, то обязан существовать процесс, который делает обратное преобразование. Причём, этот обратный процесс будет отличаться от первого.


Рис. 2. Дуальная пара


Если у нас есть эти два процесса и мы их закоротим, то получается взрыв. Мы во Вселенной взрывы видим, но не слишком часто. Когда, глядя на соединение противоположных процессов, мы видим, что «взрыва» не происходит, а идёт некоторая медленная реакция, то, по привычке дуального мышления, нам будет хотеться думать, что это нам попались такие особенно мирные противоположные процессы, или что эти процессы имеют особые согласующие переходные зоны.

Чтобы перейти к процессному мышлению, нам необходимо задаться вопросом «а что такого в этих процессах особенного?». Мысленно, а затем и натурно исследуя этот вопрос мы обнаружим между такими процессами некие демпферы, замедляющие взаимодействие. Когда таких демпферов нет, перенос энергии и ресурса между противоположными процессами происходит весь и одномоментно, накачивая эти же процессы новым ресурсом для трансформации, что и вызывает эскалирующую бурную реакцию. Демпферы замедляют этот перенос и эскалации не происходит.

Процессный подход требует выделять эти демпферы и рассматривать их, как отдельную пару сущностей, а не как структурные части процессов первой пары. Это выделение правомерно в силу того, что эти демпфирующие части существуют всегда, с той же неумолимой неизбежностью, что и два элемента первой пары.

Возникновение этой второй пары полностью соответствует развёртыванию диалектического принципа, поскольку если мы имеем одну дуальную пару, обязательно должны иметь к ней вторую, т.е., дуальную «дуальную пару».


Рис. 3. Две дуальных пары в четверице


Причём, эти пары, очевидно, друг от друга дуально отличаются: одна из них в Науке складности известна как «агрессивная», между элементами которой возникает «коротыш». А вторая известна, как «пассивная,» элементы которой друг с другом почти не взаимодействуют и этим же качеством они демпфируют агрессивную пару. Видится вероятным, что именно взаимная пассивность этой второй пары процессов долгое время делала её незаметной для естествознания.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3