Синтетическая биология пересекается с компьютерными технологиями, и в частности с искусственным интеллектом, используя машинное обучение и выявляя значимые закономерности в больших массивах данных. На машинном обучении работают сервисы, которыми вы часто пользуетесь, например рекомендации на YouTube и Spotify, а также голосовые помощники вроде Alexa и Siri. В контексте биологии машинное обучение позволяет исследователям выявлять, продвигаясь бесчисленными мелкими шажками, новые закономерности. Проведение опытов с несколькими переменными часто требует мельчайших методичных изменений в измерениях, материалах и исходных данных и в итоге жизнеспособного продукта все равно может не получиться. DeepMind, подразделение компании Google, занимающееся исследованием и созданием систем искусственного интеллекта, которые затем применяются для решения сложных проблем, разработало способ тестирования и моделирования многосоставной структуры укладки (сворачивания) длинных цепочек аминокислот, решив тем самым проблему, долгое время не дававшую покоя ученым. Разработанная DeepMind для этой цели система AlphaFold была использована, чтобы предсказать структуру более чем 350 000 белков человека и 20 модельных организмов. К 2022 г. набор данных должен был, по ожиданиям, превысить 130 млн структур{31}. Это позволит исследователям синтезировать новые препараты гораздо быстрее, чем путем подбора, как делали в Genentech при создании хумулина{32}. В результате применения данного метода и других подходов синтетической биологии лаборатории чаще будут находить удачные варианты, что снизит стоимость вывода новых лекарств на рынок. Исследователи Genentech синтезировали инсулин человека до наступления эры искусственного интеллекта и компьютеров, использующих огромные массивы данных, машинное обучение и глубокие нейронные сети, созданные для того, чтобы превзойти по сообразительности самых умных представителей человечества. Сегодня существуют обширные базы данных о белках и обмене веществ, а компьютеры способны вновь и вновь запускать миллиарды процессов моделирования в поисках решения вычислительных задач. Если бы та же группа исследователей взялась за решение инсулиновой проблемы сейчас, им бы не пришлось месяцами круглосуточно корпеть в лаборатории над пробирками и чашками Петри. При наличии платформы, управляемой искусственным интеллектом, они в течение нескольких часов перебрали бы все возможные трехбуквенные комбинации и нашли бы идеальное решение.
40 трлн микроскопических фабрик выполняют инструкции, принимают решения, реплицируются и обмениваются друг с другом информацией самостоятельно, в течение всего дня, даже не спрашивая у вас разрешения и не требуя вашего участия. В следующие десять лет синтетическая биология передаст полномочия по программированию главного суперкомпьютера клеток в руки человека.
РЕДАКТИРОВАНИЕ ПЛОХИХ ГЕНОВ
Что будет, если мы подвергнем сомнению глубоко укоренившееся убеждение, что плохие гены например, те, что вызвали у Билла диабет I типа, это всего лишь прискорбный факт человеческого существования? Биллу повезло. Его родители знали, как обеспечить мальчику очень хороший уход, и, что еще важнее, могли себе это позволить. На борьбу с заболеванием семья бросила все силы. По окончании учебного года его отправили на лето в лагерь для больных диабетом, где Билл проводил время в окружении других детей и врачей и учился справляться с болезнью. Но даже сегодня такой человек, как Билл, который отдыхал в специальном лагере и родители которого бдительно следят за его здоровьем, по-прежнему сталкивается с неопределенностью в отношении диабета.
В самый разгар пандемии COVID-19 миллионы американцев стали безработными и потеряли право на медицинское обеспечение. В соцсетях появились новые подпольные сети обмена информацией для диабетиков: люди, пользующиеся медицинской страховкой, отдавали лишние флаконы с инсулином диабетикам, которых в противном случае ожидала смерть{33}, {34}. Это не были сделки, которые обычны на сайте продажи наркотиков «Шелковый путь» на задворках интернета. На сей раз люди создали систему, призванную спасать жизни. Но даже до пандемии 25 % диабетиков в США были вынуждены ограничивать потребление инсулина из-за его цены{35}. (В первую очередь это коснулось латиноамериканцев, коренных американцев и темнокожего населения групп, для которых характерны частые случаи диабета и повышенный уровень бедности.) До того как пандемия привела к закрытию границ, диабетики из США часто ездили в Мексику или Канаду, чтобы купить инсулин подешевле{36}. Инсулин, в котором ежедневно нуждаются примерно 10 % американцев{37}, {38}, производят только три компании Sanofi, Novo Nordisk и Eli Lilly, и цена на него подскочила до небес. С 2012 по 2016 г. стоимость препарата на месячный курс лечения выросла вдвое с 234 до 450 долларов{39}. Сегодня цена одного флакона с инсулином может доходить до 250 долларов. Некоторым диабетикам в месяц требуется шесть флаконов, что иногда вынуждает американцев, не обеспеченных хорошей медицинской страховкой, уменьшать дозу или решать, куда потратить деньги на инсулин, на продукты для семьи или на оплату жилья. Фармацевтические компании будут настаивать на том, что растущие цены отражают стоимость инноваций. На создание все более эффективных формул, испытаний и технологий уходят деньги и время как мы видели на примере Genentech и опытов Бантинга и Беста, и, будучи акционерными обществами, фирмы обязаны возвращать инвестиции, вложенные в исследования и разработки. В этом состоит ирония судьбы. Напомним, что, когда Бантинг и Бест со своей командой открыли и создали инсулин в 1923 г., они отказались извлекать коммерческую выгоду из своего продукта и зарабатывать на нем. Всего за 1 доллар они продали патент Торонтскому университету, так как хотели, чтобы все нуждающиеся в жизненно важном лекарственном препарате могли его купить. «Сейчас, когда идет поиск выхода из кризиса, связанного со стоимостью инсулина, пишет редакция The New England Journal of Medicine, полезно помнить о том, что они [Бантинг и Бест] считали, что инсулин принадлежит обществу. Спустя почти 100 лет тысячи американцев не могут купить инсулин из-за его высокой стоимости»{40}. Современный инсулин производится на заводах с использованием синтетического процесса, который просто имитирует то, что должен делать сам организм. С развитием синтетической биологии мы выйдем за рамки имитации: возможно, будет создан штамм модифицированных клеток, вырабатывающих инсулин более сложным и более точным образом. Одна из самых многообещающих разработок связана с реинжинирингом клеток, в результате чего они будут способны производить инсулин только тогда, когда он необходим. Это повлечет серьезные последствия: что, если в будущем флаконы с дорогостоящим инсулином станут не нужны? Что, если вместо инсулиновых помп и инъекций диабетики станут однократно принимать определенную дозу синтетических клеток, способных реагировать на уровень глюкозы в крови и самостоятельно вырабатывать инсулин?
Как бы фантастически это ни звучало, такое будущее ближе, чем кажется. В 2010 г. один из выдающихся биотехнологов Крейг Вентер возглавил команду, которая синтезировала ДНК целой бактерии. Ученые скопировали то, что уже существовало в природе, но добавили один нюанс. Новый геном включал имена 46 исследователей, которые помогали писать проект, а также цитаты из высказываний Роберта Оппенгеймера, строки из стихотворений Джеймса Джойса и секретные сообщения, которые могли расшифровать только члены команды. И, размножаясь, бактерии из поколения в поколение переносили этот новый биологический код, а также стихи, цитаты и сообщения. Впервые было получено подтверждение того, что создание новой формы жизни, запрограммированной на выполнение определенных задач и способной воспроизводиться, возможно{41}. Это был не просто синтез инсулина человека. Это была целенаправленная и спланированная эволюция жизни с использованием созданного компьютером генома. Мельком эту силу мы увидели в 2019 г., когда работавшие с Вентером исследователи продемонстрировали, что генетический код можно написать. Это событие указывало на то, что в будущем появится возможность улучшать генетическую комбинацию, доставшуюся таким людям, как Билл{42}. Иными словами, если клетки можно перепрограммировать, то, возможно, у диабетиков есть шанс стать своей собственной аптекой. Более широкие последствия обоснованны и вместе с тем не фатальны: если группа ученых способна создать новый штамм бактерий с филигранной биологической подписью «Жить, ошибаться, терпеть неудачи, побеждать, воссоздавать жизнь из другой жизни»{43}, то какие пользовательские функции и характеристики могут быть встроены в наш живой механизм? Если в будущем вся жизнь станет программируемой, то люди, обладающие соответствующими знаниями и возможностями, будут наделены безграничной властью. Им по силам будет создавать жизнь, вносить изменения в существующие ее формы, делать практически всё будь то во благо или во зло. Именно поэтому второе состязание с участием не одной клетки или белка, например инсулина, а всего генома человека превратилось в еще более азартную гонку, победителем которой стал малообещающий игрок, а в результате возникли вопросы, кому следует предоставлять права на запись нашего общего биологического кода.