Исследователи, о которых идет речь, работали в стартапе Genentech; он на тот момент существовал всего год и разрабатывал новую, неоднозначно воспринимаемую технологию рекомбинантной ДНК. Если известные университеты и фармацевтические компании со множеством титулованных биомедиков занимались совершенствованием традиционных методов, то в Genentech пытались достичь цели, действуя на молекулярном уровне: брали две разные нити ДНК и рекомбинировали их в единое целое{18}. ДНК (дезоксирибонуклеиновая кислота) это генетический материал жизни, а технология рекомбинантных ДНК позволяет соединять (объединять) генетический материал различных видов, например человека и бактерии{19}, ради воспроизведения, синтеза и потенциального улучшения существующего генетического кода. Хотя к 1977 г. компания Genentech уже получила первые успешные результаты, исследовательское сообщество не воспринимало их всерьез. На то было несколько причин. Во-первых, синтез был аналогичен клонированию генетического материала, а это вело к возникновению рисков на последующих этапах, таких как генетические манипуляции. Учитывая прогресс, достигнутый в другой вызывавшей полемику технологии экстракорпоральном оплодотворении (ЭКО), некоторые критики предсказывали, что в будущем люди начнут создавать детей на заказ: с желаемым цветом волос и глаз, мускулатурой и другими признаками. На том этапе присутствовали лишь бредовые мрачные предположения и стойкое сопротивление переменам{20}. В результате технологию рекомбинантной ДНК компании Genentech признали слишком неординарной и подлежащей дополнительному изучению. К тому же биологические исследования Genentech финансировались не федеральными властями, а малоизвестными венчурными инвесторами, что послужило еще одним тревожным сигналом для влиятельных чиновников. Венчурная фирма Kleiner Perkins Caufield & Byers сделала стартовое капиталовложение в Genentech в размере 1 млн долларов{21} (в пересчете на сегодняшний день примерно 4,6 млн долларов{22}). Партнеры тоже были новичками в этой области и главным образом интересовались полупроводниками. Они решились дать шанс компании Genentech воплотить в жизнь свое видение будущего, а та, в свою очередь, рискнула поработать с инвесторами, которым, в отличие от федерального правительства, нужно было вернуть свои средства. Будучи новым предприятием, компания Genentech не тратилась на удобства. Примерно в то же время, когда Стив Джобс и Стив Возняк собирали в гараже компьютеры, группа ученых из Genentech в неприглядной промзоне на южной окраине Сан-Франциско, в помещении грузового склада для авиаперевозок, приступила к оборудованию биохимической лаборатории. Используя технологию рекомбинантной ДНК, Genentech добилась первых успехов. В лабораториях компании был синтезирован соматостатин гормон поджелудочной железы, который помогает регулировать работу эндокринной системы. Когда стало известно, что компания Eli Lilly объявила свой инсулиновый конкурс, в Genentech подумали, что у них есть жизнеспособное, хоть и совершенно невероятное решение проблемы с поставками.
Поскольку метод рекомбинантной ДНК, применяемый Genentech, бросал вызов общепринятым представлениям, среди университетских научных центров нашлось совсем немного желающих предложить фирме партнерство или предоставить лаборатории для проведения работ. Для участия в конкурентной борьбе Genentech требовалось расширить штат ученых, готовых разрабатывать тему использования рекомбинантной ДНК для производства инсулина. При этом работы должны были вестись в арендованных лабораториях в секретном режиме. Обещанная награда была огромной, однако серебряных и бронзовых медалей конкурс не предусматривал: Eli Lilly интересовала только та команда, которая создаст безопасный масштабируемый продукт. Перед Genentech стояла задача обойти соперников и получить контракт, в противном случае, несмотря на проделанный колоссальный труд, команда осталась бы с пустыми руками.
Эксперимент требовал круглосуточной работы по усовершенствованию техники соединения генов, которую в Genentech изначально разработали для синтеза соматостатина. Кроме того, требовалось больше людей. От Eli Lilly выделили дополнительные средства, и учредители привлекли молодых ученых, едва окончивших аспирантуру. Это были чрезвычайно разноплановые специалисты для проведения биомедицинского исследования Genentech собрала не обычную группу, а суперкоманду{23}, в состав которой вошли химики-органики Деннис Клейд и Дэвид Геддель, работавшие над клонированием ДНК в Стэнфордском исследовательском институте, биохимик Роберто Креа, который специализировался на модификации нуклеотидов, генетик Артур Риггс, который экспрессировал первый искусственный ген в бактериях, и Кейичи Итакура, принимавший участие в разработке технологии рекомбинантной ДНК{24}.
Проблема, с которой столкнулась компания Genentech при синтезе молекулы инсулина, заключается в том, что эта молекула состоит из длинных цепей аминокислот их в этой молекуле 51, а не 14, как в случае с соматостатином. У вас при мыслях о белке, возможно, возникает ассоциация с яичницей или с куриной грудкой. Для сотрудников Genentech белки, выступающие катализаторами большинства химических реакций в живых клетках и контролирующие практически все клеточные процессы, были ключом к получению инсулина.
Но даже если бы ученым удалось выстроить 51 аминокислоту комбинацию молекул, составляющих белок, точно по порядку, то для производства инсулина их все равно нужно было бы воссоздавать{25}. Для этого необходимо правильно выполнить химическое соединение фрагментов ДНК, сшить их и пересадить в бактерии. И это лишь половина дела. Вдобавок требуется взломать структуру бактерий и заставить их вырабатывать синтезированные цепи инсулина, что не так-то просто. Если все сделано правильно, далее предстоит заняться очисткой цепей инсулина, объединить их в полную молекулу, а затем надеяться, что она идентична молекуле, которую вырабатывает поджелудочная железа человека. Эта была невероятная по дерзости идея конструирования на клеточном уровне, которую стремился осуществить страдающий от хронического недофинансирования крошечный коллектив ученых, чьи представления о будущем одним казались мистическими, а другим попросту опасными. Сложность задачи и масштабы конкуренции вынуждали команду Genentech работать втайне от домашних, пропадая в лабораториях и на заброшенном складе, вдали от благословенных залов Гарварда и Калифорнийского университета, в условиях сильнейшего стресса и жестких сроков. Прежде всего предстояло создать синтетический ген с правильной последовательностью ДНК, которая послужила бы инструкцией белку. Затем этот ген нужно было перенести в правильное место организма (в качестве которого выбрали бактерию E. coli, кишечную палочку), способного прочитать инструкции и выработать желаемый белок в данном случае инсулин.
Ученые старательно смешивали химические вещества, вновь и вновь проверяли различные комбинации, добиваясь верной последовательности в нитях ДНК. Кроме того, нужно было работать с самой бактерией, чтобы понять, в каком именно месте сращивать кишечную палочку с синтетическим геном для производства требуемого белка. Этот процесс напоминает конкурс кондитеров. Представьте, что члены жюри дают вам одну коробку с ингредиентами, вторую коробку с утварью и посудой, а еще духовку и ставят задачу в предельно сжатый срок без всяких подсказок испечь на допотопной кухне шоколадный торт из 12 коржей.