Во время аспирантуры в Беркли Уотербери увлекся цианобактериями, микроорганизмами, про которые было известно, что они обитают в пресной воде. Эти организмы, которых чаще называют синезелеными водорослями, обладают свойствами, больше похожими на свойства растений, чем на свойства бактерий. Главным из этих необычных свойств является способность использовать фотосинтез превращать углекислый газ и воду в кислород и углеводы. Но в 1970-х гг. главным образом считалось, что цианобактерии заселяют лишь небольшие пресноводные водоемы и не играют большой роли в процессе производства кислорода на Земле. Их обсуждали только в узком академическом кругу, а в основных учебниках по океанографии о них вообще не упоминалось.
После защиты докторской диссертации Уотербери устроился на работу научным сотрудником в Океанографический институт. В то время основной задачей в этой области было изучение океанических бактерий, о которых мало что было известно. Полевая работа была обычной частью исследований, и в августе 1977 г. Уотербери отправился на научно-исследовательском судне Atlantis II в Аравийское море регион океана между Индией и Саудовской Аравией, известный очень высоким содержанием неорганических питательных веществ и богатый морскими обитателями. Задачей его группы был анализ проб из океана с использованием новой технологии: эпилюминесцентной микроскопии. С помощью этой новой методики планировалось определить типовые уровни содержания известных бактерий в океане.
Принципы эпилюминесцентной микроскопии простые. К пробе воды добавляются флюоресцентные метки, состоящие из строительных блоков ДНК. Эти метки прикрепляются к соответствующим частям ДНК бактерий, как фрагменты пазла, подходящие друг к другу. Под микроскопом, при облучении синим светом, благодаря прикрепленным меткам эти бактерии начинают флюоресцировать зеленым цветом. Если подходящие бактерии отсутствуют, метки не будут активированы и в микроскоп ничего не будет видно.
Прежде чем добавить метки ДНК к пробам воды из Аравийского моря, Уотербери сделал то, чему учат на всех занятиях по естествознанию, и это обязательный этап при любом эксперименте, на любом уровне науки, от опытов в классе средней школы до лабораторных исследований, за которые дают Нобелевскую премию: он установил строгий контроль, чтобы гарантировать достоверность результатов. Ученые знают, что контрольные группы основа всех открытий. Чтобы найти что-то аномальное, нужно уметь видеть и доказывать существование того, что считается нормальным. Поэтому, перед тем как добавлять метки ДНК, Уотербери проанализировал образец воды из Аравийского моря под новым эпилюминесцентным микроскопом, чтобы иметь исходные данные для сравнения.
Уотербери предположил, что не увидит ничего необычного в воде Аравийского моря, но был поражен. Синий свет эпилюминесцентного микроскопа прошел сквозь воду, и в окуляре вспыхнуло ярко-оранжевое флюоресцентное свечение. Уотербери раньше изучал цианобактерии и понял, что этот оранжевый свет был естественной флюоресценцией фикоэритрина, фотосинтетического пигмента, который совместно с хлорофиллом запускает важнейшую реакцию распада двуокиси углерода на кислород и углерод, делающую возможной жизнь на нашей планете. Прежде никому не было известно, что цианобактерии могут существовать в глубоководных соленых водоемах, поэтому это была колоссальная находка.
Открытие существования цианобактерий в Аравийском море было только началом, но Уотербери знал, что, для того чтобы детально изучить морские цианобактерии, ему придется выращивать бактериальные культуры. Он пытался в течение нескольких месяцев, всякий раз используя новую среду и разные питательные вещества, чтобы добиться репликации цианобактерий. Но всякий раз происходило одно и то же в течение суток все клетки погибали. Без культивирования изучать морские цианобактерии было бы невозможно. Чтобы добиться успеха, Уотербери пришлось вернуться к базовой биологии окружающей среды.
Океанические и пресноводные организмы ведут себя совершенно по-разному. Обычно мы думаем, что океанские существа выносливы и хорошо приспосабливаются, а океан суровое и дикое место. Пресноводные водоемы, наоборот, кажутся спокойными и идиллическими, там нет акул, скатов и смертельных медуз. Такова человеческая точка зрения. С точки зрения бактерий все наоборот.
Среды обитания пресноводных и морских бактерий разительно отличаются. Во внутренних пресноводных водоемах температура, а также количество питательных веществ и минералов могут сильно колебаться. Кроме того, летом и зимой в пресноводной среде создаются очень разные условия жизни, и в зависимости от сезона там часто обитают очень разные виды. По сравнению с этими водоемами обстановка в океане исключительно стабильна. Перепады температур намного меньше, чем во внутренних водоемах, а состав питательных веществ в микроокружении гораздо более постоянный. Бактерии, процветающие в пресноводной среде, то, что ученые-океанологи называют «эвтрофы», это организмы, способные жить в условиях изобилия питательных веществ и при сильных колебаниях температуры. Для морских бактерий, «олиготрофов», требуются более низкие уровни основных питательных веществ. Так что, хотя нам это кажется контринтуитивным, морские бактерии более чувствительны, более уязвимы, чем их пресноводные родичи.
В том беспокойном году Уотербери начал это понимать. Он тщательно отмывал все колбы для культур и пробирки, следя за тем, чтобы в них не оставалось даже микроскопического количества кальция или иного вещества. Затем он калибровал питательную среду, чтобы она точно соответствовала тем наноколичествам питательных веществ, которые он измерял в океанской воде. Наконец, через год кропотливой работы, и к радости Уотербери, цианобактерии из океана впервые начали расти за пределами своей естественной среды обитания. Открытие вида Synechococcus официально состоялось.
Остались следующие вопросы: сколько этих бактерий и какова их среда обитания? С дальнего конца деревянной пристани в Вудс-Холе Уотербери набрал в несколько банок соленой воды, немного мутной, но в остальном ничем не примечательной. Он поместил образец под эпилюминесцентный микроскоп и увидел изобилие цианобактерий.
В следующие десять лет наблюдался взрывной рост количества исследований цианобактерий. Почти в каждом уголке океана на Земле были выявлены сотни различных видов. Теперь мы знаем, что синезеленые водоросли населяют любой водоем с температурой выше 5 , обычно во внушительных количествах, настолько внушительных, что Уотербери называет их «эти зверюшки».
Сегодня считается, что кислородом в нашей атмосфере мы обязаны главным образом цианобактериям, так как численность их огромна, а среда обитания разнообразна. Они выделяют его в ходе фотосинтеза процесса, используемого растениями, водорослями и цианобактериями для превращения поглощаемого ими солнечного света в энергию. Первичной молекулой, улавливающей солнечный свет, является хлорофилл, молекула, которая использует энергию фотонов света для реакции взаимодействия углекислого газа и воды с образованием глюкозы и кислорода. В ходе этой реакции фотосинтеза также выделяется энергия, которая помогает цианобактериям преобразовывать углекислый газ из атмосферы в питательный углерод, который сначала потребляется низшими формами жизни, а затем передается по пищевой цепочке. Этот процесс делает цианобактерии источником большой доли производимых питательных веществ на нашей планете. Они также ответственны за большую часть нефти, природного газа и угля на Земле, потому что все они образовались из отложений (мертвых цианобактерий), скапливавшихся на дне океана в течение миллионов лет. Группа цианобактерий и правда является самым многочисленным видом на Земле и одним из важнейших для жизни.