Как выглядит этот процесс? Один из разработчиков этого проекта, Шохей Хидо, подтвердил, что на обучение роботу требуется несколько часов, однако после завершения этого процесса его продуктивность составляет почти 90%. При этом роботу демонстрируется результат, которого он должен достичь, и он сам подбирает нужные алгоритмы для его достижения. Ранее, когда роботы могли двигаться только под руководством встроенных схем, этим занимались программисты они меняли программное обеспечение и обновляли систему, на что также уходили часы сложной, скучной и ответственной работы. Теперь же, когда робот может справиться с этими задачами без помощи человека, внимание программистов направляется на решение более интересных задач. Еще удивительнее, что такие роботы могут обмениваться опытом если один представитель группы освоит определенный навык, он может передать его остальным участникам за более сжатые сроки.
Роботы в производственном процессе
Еще в 1990 году Родни Брукс, будущий основатель компаний iRobot и Rethink Robotics, опубликовал свой труд под названием «Слоны не играют в шахматы». В этой статье он развил идею, в рамках которой следовало отойти от стандартных протоколов программирования и испытать новый подход оснастить роботов датчиками, что позволило бы расширить их возможности. На основе его трудов специалисты совершили настоящий прорыв.
Ярчайшие представители последнего поколения роботов так называемые коботы, разработанные фирмой Rethink Robotics. Оснащенные десятками датчиков, они распознают предметы вокруг себя и поэтому могут работать рядом с людьми им не требуются специальные свободные участки или ограждения, защищающие работников от возможного нанесения вреда.
Компания Siemens уже давно внедрила в свою работу роботов им доверена сборка сложных моделей, зачастую даже экспериментальных образцов, разработанных в лабораториях. Такие роботы умеют видеть, поскольку оснащены соответствующими сенсорами. Другой пример роботы, которые трудятся на производстве Hitachi. Там машины не только занимаются однообразной и физически сложной работой, но также передают работникам команды, сформированные на основе анализа данных, меняющихся в режиме реального времени. Производственный процесс при этом ежедневно подстраивается под нужды потребителей, поскольку данные обрабатываются с небывалой скоростью, а команды передаются мгновенно.
Конечно, на каждом производстве остаются задачи, с которыми может справиться только человек. Автоматическая сварка может прекрасно справляться с простыми задачами например, когда нужно соединять прямые и длинные металлические детали. Там, где требуется креативный подход на сложных и мелких соединениях и в труднодоступных местах по-прежнему незаменим труд человека. Однако задачи роботов, как мы уже поняли, заключаются не в соперничестве с человеком, а в сотрудничестве с ним, поэтому на долю машин теперь приходится самая опасная и неинтересная работа.
Роботы последних поколений достаточно чувствительны и безопасны, они также разработаны с расчетом на небольшие столкновения с окружающими объектами теперь энергия от удара поглощается специальными механизмами, что делает работу значительно безопаснее. Однако разработчики из Fraunhofer IML пошли еще дальше и представили на производстве целые комплексы, которые могут самостоятельно настраиваться. Зачем это нужно? Такие производственные линии могут заниматься сборкой не одной и той же выбранной программой модели, они способны несколько раз менять задачи. Они также способны восполнять пробелы если определенные производственные сегменты выходят из строя, их задачи распределяются между другими линиями.
Что же остается человеку? Специалисты, которые ранее выполняли однообразные функции, контролируя работу роботов, теперь могут посвящать время решению инженерных задач проработке механизмов, совершенствованию моделей.
Но разве это не опасно? Что если оборудование выйдет из строя? Элементы искусственного интеллекта позволяют добиться больших успехов и в контроле теперь они могут самостоятельно собирать данные о состоянии техники и передавать информацию о любых изменениях рабочим. Людям больше не нужно осматривать и проверять оборудование вручную со всем справляются датчики и обучающиеся программы.
Новый взгляд на техническое обслуживание
Каждый автомобиль нуждается в регулярном техническом осмотре. Это не очень удобно, поскольку отнимает лишнее время у водителя, а также нагружает автосервисы, отнимает средства и требует соблюдения графика. Но если технический осмотр настолько важен у отдельных автомобилей, то на производственных объектах он становится неотъемлемой частью работы. Регулярное обслуживание машин, включающее в себя осмотр, может тормозить производство, хотя зачастую во время этих процедур специалисты не выявляют никаких неисправностей они лишь убеждаются в том, что техника работает правильно. Если бы можно было привлекать специалистов только в моменты, когда техника действительно нуждается во вмешательстве, но при этом еще не поломана и работает вполне исправно, это значительно сократило бы расходы времени и средств.
Именно этому вопросу посвящены труды разработчиков платформы Predix. Эта платформа следит за состоянием подключенной к ней техники, что открывает большие перспективы.
Например, собранные платформой данные за определенный период времени могут использоваться для статистического анализа на их основе можно выявить самые слабые детали и определить средний срок их службы. Кроме того, входящие в состав платформы датчики позволяют проводить исследования прямо во время производственного процесса их можно устанавливать внутри турбин и сложных устройств, измеряя их выносливость и реакцию на нагрузки. К этому следует добавить и пользу от полученных данных, на базе которых производитель может сформировать рекомендации по более безопасной и эффективной эксплуатации техники.
Успешно применяющая эту технологию компания General Electric уже продемонстрировала впечатляющие результаты производительность ее ветряных электростанций увеличилась на 20%.
Беспилотные аппараты, склады и разведка
Кроме того, искусственный интеллект, управляющий дронами беспилотными летательными аппаратами, оснащенными датчиками и съемочной техникой может в значительной степени упростить задачи предприятий, занимающихся добычей сырья. Дроны с легкостью проникают в местности, которые остаются труднодоступными для людей. Они собирают нужные данные и передают их операторам, а в некоторых случаях анализируют информацию сами. Помощь дронов незаменима и в работе компания BHP Billiton Ltd из Австралии использует летательные аппараты для проверки состояния техники и ландшафта. Помощь дронов практически незаменима, когда речь идет о контролируемых взрывах, за счет которых человек получает доступ к нужным ресурсам техника проверят состояние почвы, обеспечивает видимость и проверяет, не находятся ли люди в опасной зоне. В этом случае используется уже знакомая нам платформа Predix.
Как роботы влияют на логистику
Обычная проблема складов заключается в невозможности идеально организовать пространство. Между стеллажами и паллетами оставляют достаточно широкие проходы, которые позволяют людям свободно перемещаться с грузом, когда они передвигают его вручную или при помощи техники. За счет этого склады занимают большую территорию и нуждаются в сложном обслуживании.