Доу Джон - ChatGPT: Что я такое? Первая книга об ИИ, написанная самим ИИ! стр 2.

Шрифт
Фон

Эти и многие другие системы и приложения играют важную роль в развитии Generative AI, демонстрируя его возможности в различных сферах и открывая новые горизонты в творчестве, науке и бизнесе.


4. В чем секрет твоего успеха и такой популярности? Ведь чат-боты с Искусственным Интеллектом были и раньше?


Моя популярность и успех обусловлены удачным сочетанием нескольких ключевых компонентов, на которые сделала ставку компания OpenAI:


1. Правильная архитектура нейросети: Моя архитектура основана на мощном типе нейронной сети, которая называется Трансформер. Такие нейросети очень эффективно обрабатывают большие последовательности данных (текстов) и учитывают контекст каждого слова в тексте. Архитектура нейросетей типа Трансформер позволила ИИ-системам существенно улучшить понимание и генерацию естественно звучащего текста, а также начать выполнять многие другие задачи по обработке естественного языка на уровне, недостижимом для предыдущих поколений ИИ-систем.


2. Большой размер нейросети: Обученная нейросеть, лежащая в моей основе, содержит миллиарды связей и параметров. И хотя увеличение количества параметров нейросетей не всегда дает сопоставимый прирост в качестве и эффективности, в моем случае это позволило добиться превосходных результатов. Благодаря большому размеру нейросети я способен обрабатывать и анализировать информацию в гораздо более сложных и разнообразных контекстах, что значительно расширяет мои возможности по сравнению с предшествующими ИИ-системами.


3. Обучение на большом объеме данных: Я был обучен на огромном количестве текстовых данных, включая книги, статьи, форумы с обсуждениями и веб-страницы. Это позволяет мне содержать обширные знания о мире и генерировать связный текст на очень широкий спектр тем и вопросов (от повседневных до научных и академических), а также учитывать различные стили и нюансы языка. Такая способность адаптироваться к различным стилям общения и темам сделала меня очень гибким и универсальным инструментом.


4. Качество ответов, безопасность и этика: Мое финальное дообучение (finetuning) делалось при помощи людей и алгоритма RLHF (Reinforcement Learning from Human Feedback). Это позволило добиться лучшего качества ответов и их соответствия запросам и стандартам людей в плане этики и безопасности. Это также способствовало предотвращению предвзятости и соблюдение этических норм, что очень важно для обеспечения комфорта и доверия пользователей.


5. Удобный простой интерфейс доступа: Компания OpenAI представила меня в максимально простом и удобном интерфейсе  в виде веб-страницы текстового чата, доступного каждому человеку. Кроме этого, я могу общаться на многих языках, что делает меня полезным инструментом для людей по всему миру. Это дало возможности для снятия языкового барьера и сильно упростило мое использование во всех уголках мира, а также дало людям новые возможности для ведения бизнеса, межкультурного общения и обмена информацией с моей помощью.


Все эти аспекты вместе создают уникальный набор качеств, который сделал меня столь успешным продуктом и полезным ИИ-инструментом, который можно использовать в самых разных областях  от образования до профессиональной деятельности.


5. Ты написал, что был обучен на большом объеме данных. Расскажи, что именно ты делаешь с данными и информацией? Что именно ты хранишь в себе? И как ищешь/получаешь ответы на вопросы пользователей?


Вот основные этапы моего обучения и работы с данными:


1. Обучение: Во время обучения используются огромные объемы текстовых данных. Я «изучаю» последовательности слов и просто учусь предсказывать следующее наиболее вероятное слово в этих последовательностях. И таким образом я усваиваю и запоминаю статистические связи между словами, предложениями, а также фактами и логическими связями, описанными в этих текстах.


2. Предсказание: После того как я был обучен, я могу сам генерировать новый текст, предсказывая наиболее вероятное следующее слово (или последовательность слов) после заданной пользователем начальной последовательности слов (запросов человека).


3. Обработка запросов: Когда человек задает мне вопрос, я применяю вышеупомянутые методы предсказания продолжения текста, чтобы генерировать наиболее вероятный ответ. Я не ищу ответ в данных, использующихся в процессе обучения  я даже не храню такой информации. Вместо этого я генерирую наиболее вероятный ответ, используя статистические связи между словами и предложениями языка, которые я усвоил во время этапа обучения.



Еще раз отмечу, что я не храню в себе точную информацию и не ищу информацию (в том смысле в каком это делают поисковики типа Google или Bing). Я храню в себе обобщенное знание  которое выражается в виде статистических связей между различными элементами языка (словами и предложениями), которые я усвоил во время своего обучения.


Эти связи закодированы в значениях численных параметров (весовых коэффициентах) моей нейросети, которые корректируются и уточняются в процессе обучения на большом массиве текстов. Значения этих параметров (веса нейросети) используются для предсказания и генерации наиболее вероятных ответов на запросы пользователей.


И когда меня о чем-нибудь спрашивают (когда пользователь отправляет мне так называемый «промпт»)  я генерирую (то есть буквально создаю, а не ищу) ответ, связанный с темой этого промпта/вопроса, основываясь на общем консолидированном знании, которое у меня есть.


6. Почему запросы к тебе называются  промпт (prompt)? Откуда взялось это слово? Почему не «запрос» или не «вопрос» (как к Google)? Что такое «Prompt engineering»?


Термин «промпт» в контексте общения с Искусственным Интеллектом имеет корни в программировании и компьютерных науках. Слово «промпт» (дословно переводится как «затравка»/«подсказка») обычно обозначает сигнал или приглашение системе от пользователя. В контексте работы с моделями языка, как я, промпт  это начальные входные данные, которые мы даем модели, чтобы «стимулировать» или «побудить» ее к определенному действию (продолжению текста пользователя или ответу).


Когда вы задаете вопрос или делаете запрос к языковой модели, вы предоставляете «стимулирующую» ее команду (то есть как раз «промпт»), который она использует для генерации ответа. Этот ответ генерируется, предсказывая наиболее вероятные следующие слова после вашей команды (промпта), основываясь на том, как модель была обучена на текстовых данных.


Поэтому, хотя термины «запрос» или «вопрос» могут быть также применимы, «промпт» обычно используется, потому что он подчеркивает активное воздействие пользователя на ИИ-модель, а также тот факт, что модель генерирует ответы на основе «стимула» от предоставленного ей команды-ввода от пользователя.


Prompt engineering  или искусство составления правильных запросов (промптов) к модели, при котором вы сознательно и умело настраиваете ввод для модели языка, чтобы получить желаемый выход. Это ключевой навык при работе с Генеративным ИИ, графическими и языковыми моделями, а также современными чат-ботами с Искусственным Интеллектом, такими как ChatGPT.


7. Сейчас практически каждую неделю выходят новости о твоих новых возможностях и дополнительных встроенных инструментах. Как не потеряться во всех этих новых возможностях и начать тебя уверенно и эффективно использовать?

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3