Вяльцев Андрей - Базовая оценка минерализации. Ресурсный геолог стр 9.

Шрифт
Фон

§ Задание 1.1

Для выборки значений содержаний проб:

0, 0.2, 0.6, 0.9, 0.9, 1.4, 1.6, 3

рассчитайте:

 Среднее.

 Мода.

 Медиана.

 Дисперсия (несмещенная).

 Стандартное отклонение.

 Коэффициент вариации.

Ответы округлите до двух знаков после запятой.

§ Задание 1.2

Скачайте8 выборку значений содержаний проб и рассчитайте:

 Среднее.

 Мода.

 Медиана.

 Дисперсия (несмещенная).

 Стандартное отклонение.

 Коэффициент вариации.

Ответы округлите до двух знаков после запятой.

Диаграмма накопленной частоты

Кроме гистограммы, классическим вариантом диаграммы, характеризующей выборку, считается также диаграмма накопленной частоты. Диаграмма накопленной частоты может быть построена как на сгруппированных данных, так и на не сгруппированных.

При построении диаграммы накопленных частот по сгруппированным данным выполняется разбиение всего диапазоны на классы (аналогично тому, как это делается для гистограммы), классы ранжируются по возрастанию, затем для каждого класса суммируется количество данных, попавших в этот класс с количеством данных, попавших во все классы, «ниже» данного. То есть частота данных в каждом классе накапливается от «низов» выборки до ее «верха». В качестве примера рассмотрим некоторую величину, распределенную следующим образом:


Пример распределения


В табличном виде это распределение можно представить следующим образом:



Выполним расчет накопленной частоты для приведенного примера:



И теперь  построение графика:


Диаграмма накопленных частот


При построении диаграммы накопленных частот по не сгруппированным данным последовательность действий чуть другая:

 Данные ранжируются по возрастанию.

 Составляется ранжированный ряд уникальных значений.

 Для каждого уникального значения подсчитывается частота встречаемости.

 Для каждого уникального значения подсчитывается накопленная частота: частота встречаемости этого значения плюс частоты всех значений более низкой величины. То есть в данном случае в качестве классов значений (как в варианте со сгруппированными данными) выступают уникальные значения исследуемой величины.

График накопленных частот для того же распределения, что и выше по не сгруппированным данным, представлен на рисунке ниже.


График накопленных частот по не сгруппированным данным

Коэффициент асимметрии

При построении гистограмм можно получить график как симметричный, в котором больших и малых значений «примерно поровну», так и асимметричный  с преобладанием высоких или низких значений. Для условий данных опробования цветных или драгоценных металлов асимметричный график встречается намного чаще симметричного. Логично, что нужна некая точная характеристика асимметрии, которая позволила бы избежать волюнтаризма в определении степени асимметричности выборки. Так давайте же сконструируем такую характеристику.

Итак, у нас есть набор выборочных значений, основная масса которых группируется «слева» или «справа». Логично задать себе вопрос: слева или справа от чего? Видимо, от среднего арифметического. То есть, если мы попытаемся рассчитать разность (X

i

среднее

i

среднее

 хочется получить безразмерную величину,

 стандартное отклонение имеет те же единицы измерения, что и выборочные данные,

 мы уже рассчитали среднее из кубов разностей,

становится понятным, что необходимо выполнить возведение в куб также и величины стандартного отклонения. Итоговая величина будет рассчитываться по формуле:



Полученная величина называется коэффициентом асимметрии или просто асимметрией. Коэффициент асимметрии показывает, куда и насколько сильно смещено среднее выборки относительно максимальной частоты распределения. В случае нулевого (или близкого к нулю) коэффициента асимметрии распределение симметрично и «высоких» значений примерно столько же, сколько «низких». В этом случае среднее и медиана выборки близки либо вообще равны.


Распределение с близким к нулю коэффициентом асимметрии


В случае отрицательного коэффициента асимметрии «высоких» значений больше, чем «низких». Среднее ниже медианы, то есть по оси значений смещено влево. В этом случае говорят, что распределение случайной величины имеет левую или отрицательную асимметрию.


Распределение с отрицательным коэффициентом асимметрии


В случае положительного коэффициента асимметрии картина прямо противоположна: «низких» значений больше, чем высоких, среднее смещено относительно медианы вправо (помните пример с жадным директором предприятия?  добавьте к этому «нехорошему» человеку его зама, главбуха, еще парочку топ-менеджеров и получите правоасимметричное распределение зарплат).


Распределение с положительным коэффициентом асимметрии


Отобразим графически все виды асимметрии по отдельности.


Гистограммы различных видов асимметрии


Диаграммы накопленной частоты будут выглядеть следующим образом.


Диаграммы накопленной частоты различных видов асимметрии


Сведем гистограммы на один график.


Гистограммы различных видов асимметрии


Кроме характеристики степени асимметрии, также существует характеристика того, насколько полученная гистограмма «острая» или «тупая».


Гистограммы различных видов асимметрии


Характеристика, которая позволяет судить о степени «резкости» или «экстремальности», носит название коэффициента эксцесса. На практике коэффициент эксцесса используется значительно реже, поэтому в настоящей главе его смысл подробно не раскрывается.

Виды распределений

Нормальное распределение

В статистике существуют некоторые «стандартные» типы распределений, одним из которых является так называемое «нормальное» распределение. Этому распределению соответствуют распределения многих «бытовых» величин: рост и вес определенной группы людей, во многих случаях  распределение ошибок измерения и т. д. Поскольку это распределение является широко распространенным, его параметры хорошо изучены. Коэффициенты асимметрии и эксцесса нормального распределения равны нулю (точнее, неотличимы от нуля). Среднее арифметическое равно медиане.

Кроме того, для нормального закона существует так называемое «правило трех сигм», которое гласит, что:

 68% значений находятся в пределах плюс-минус 1 стандартного отклонения от среднего значения;

 95% значений находятся в пределах плюс-минус 2 стандартных отклонения от среднего значения;

 99,7% значений находятся в пределах плюс-минус 3 стандартных отклонения от среднего значения.


Гистограммы различных видов асимметрии


Это правило позволяет не только находить интервал, куда наверняка попадут практически все значения интересующей нас переменной, но и искать значения вне этого интервала. Эти значения называют выбросами. Появление выбросов не является «запрещенным» с точки зрения нормального распределения, но их наличие маловероятно, а потому подозрительно. Это правило было бы хорошим инструментом для поиска ураганных содержаний, если бы не одно «но»: для его применения требуется, чтобы распределение было, во-первых, однородным, а, во-вторых, не противоречило нормальному закону распределения. Что, к сожалению, чаще всего не так (причем зачастую не выполняется ни первое, ни второе требование).


Логнормальное распределение

Кроме нормального распределения, также достаточно распространенным является так называемое логарифмически нормальное, или короче  логнормальное распределение: такое, при котором нормальному распределению не противоречат логарифмы значений изучаемой величины. Логнормальное распределение имеет правостороннюю асимметрию  то есть его среднее смещено по оси абсцисс вправо от медианы, а коэффициент асимметрии положителен.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3