Всего за 99.9 руб. Купить полную версию
ГЛАВА 2: АНАТОМИЯ И ГИСТОЛОГИЯ ЧЕЛОВЕКА
Любителями фитнеса или медицины редко изучаются простые вопросы анатомии и гистологии. Часто я встречал инструкторов, которые не могли разобраться в том, что такое сухожилие, что такое связка, где они и зачем нужны. Некоторым «гуру» достаточно знать что связка это не мышца. Глобально узнать местоположение мышцы и что она делает тоже необходимо. Однако этого недостаточно, если вы действительно хотите быть образованым человеком и понимать причины и следствия болячек.
Анатомия человека не меняется с момента его появления на планете, по этому абсолютно не важно, найдет он себе учебник 1990 или 2023 года издательства, главное найти учебник.
Из всех учебников по анатомии, которые я открывал, самый простой в изложении материала «Анатомия человека» М.Р. Сапина. Первый том включает в себя знания о костной, суставной и мышечной системах. Самый красочный в изображениях будет уже не учебник, а атлас. Хороший анатомический атлас Синельниковых и атлас Неттера. Помимо изображений, в атласе Синельниковых очень подробно изложен материал, но сухость написанного дается в прочтении не каждому человеку.
В интернете есть достаточное количество видеороликов с хорошим описанием анатомии человека и такой формат самообучения тоже считается актуальным, если человеку так удобнее учить.
ОБЩАЯ ЦИТОЛОГИЯ
Клетка это живая система, которая является основной строения, развития и жизнедеятельности всего организма. Клетка состоит из мембраны, цитоплазмы и ядра.
Мембрана клетки это жидкая динамическая система и обладает следующими свойствами:
Защита и избирательная проницаемость;
Взаимодействие с соседними клетками и внеклеточной средой;
Обладает рецепторной, антигенной и транспортной функциями.
На рисунке представлена организация клеточной оболочки.
Соответственно рисунку можно увидеть что основными составляющими оболочки клетки будет сама мембрана, а так же над- и подмембранные слои. Клеточная мембрана представляет собой двойной слой липидных молекул со встроенными в него белками.
В каждой липидной молекуле различаются гидрофильная головка и гидрофобные хвосты. Билипидный слой получается за счет взаимодействия гидрофобных хвостов липидных молекул друг с другом как это представлено на рисунке 2.
Большую часть свойств мембраны обеспечивают именно белки, входящие в ее состав. Они могут пронизывать ее насквозь, находиться в ней наполовину или рядом с ней.
Надмембранный слой представлен углеводными цепочками, которые связаны с белками и липидами находящимися на поверхности клетки. Эти углеводные цепочки служат для клетки дополнительным запасом энергии и могут представлять собой структуру распознавания «свой-чужой» для клеток иммунитета. Примером служит группа крови АВО эритроцитов, представленная углеводными цепями на поверхности клетки.
Подмембранный слой образован белками-элементами клеточного каркаса которые придают клетке свойства упругости, подвижности и сохранения формы. Например при движении иммунной клетки происходит сокращение сети микрофиламентов, связанных с белками клеточной мембраны. Формируются выросты цитоплазмы псевдо-конечности для перемещения. При поглощении питательных веществ или бактерий мембрана клетки может наоборот имитировать впячивание, которое затягивается внутрь и превращается в сферу внутри клетки эндосому.
Одна из проблем ожирения связана с нарушением кровоснабжения кишечника. Длина тонкого отдела кишечника составляет около 7 метров, диаметр около 2,5см. Микроворсинки на внутренней поверхности кишечника значительно увеличивают площадь поверхности до 250 квадратных метров. Это позволяет максимально взаимодействовать кишечнику с пищей. Нарушение кровоснабжения кишечника приводит к укорочению микроворсинок и снижению площади его поверхности. Это ухудшает процессы переваривания и всасывания пищи, вызывая дефицит питательных веществ.
Цитоплазма клетки включает в себя гелеобразную субстанцию, органеллы и включения. Гелеобразная субстанция содержит в себе различные белки, жиры, углеводы и нуклеиновые кислоты.
Органеллы это органы клетки. По функциям органеллы делят на общие и специальные. Общие органеллы представлены во всех клетках, а специальные имеются только в определенных клетках и выполняют специфические функции. В мышечных клетках имеются миофибриллы, основная функция которых сокращение.
По строению органеллы продразделяются на мембранные и немембраные.
К немембранным относят: микротрубочки, рибосомы, клеточный центр, промежуточные филаменты и микрофиламенты.
К мембранным относятся митохондрии, пластинчатый комплекс Гольджи, лизосомы, пероксисомы, эндоплазматическая сеть.
Мембранные органеллы представляют собой замкнутые участки со своей внутренней структурой и ограниченные мембраной, подобной мембране клетки. Все органеллы плотно взаимодействуют между собой, словно конвеер на фабрике по изготовлению и переработке различных веществ.
МИТОХОНДРИИ
Одна из теорий предполагает что митохондрия это эволюционно мигрировавшая бактерия внутрь клетки. Она смогла остаться внутри благодаря своим свойствам утилизировать кислород. Клетки с митохондриями эволюционно смогли лучше адаптироваться к окружающему миру.
Митохондрия это органелла размером около 1-2 мкм. В клетке их всегда много. Общий объем митохондрий от объема всей клетки может составлять около 25%. Она ограничена двумя мембранами гладкой внешней и складчатой внутренней. Благодаря своей складчаточти внутренняя мембрана имеет значительно большую поверхность чем наружная. Это необходимо для того, чтобы вмещать в себе большое количество ферментов, помогающих превращать питательные вещества в энергию.
Митохондрии являются силовой станцией клетки, неким энергоблоком. Можно выделить главную функцию митохондрий следующим образом: захват богатых энергией питательных веществ из цитоплазмы и их окисление с образованием углекислого газа, воды и АТФ. Больше всего митохондрий представлено в поперечно-полосатой мышечной ткани, печени, бурой жировой ткани и мозге. Эти ткани больше всего потребляют энергии.
Внутри митохондрии есть собственная цепь ДНК и именно по этому есть целый ряд наследственных «митохондриальных» заболеваний, передающихся по женской линии. Это связано с тем, что при оплодотворении, только в яйцеклетке имеются митохондрии.
Они принимают регулирующее участие в самоуничтожении клетки если она повреждается. Эти механизмы могут запускать как сами митохондрии, так и иммунные клетки действующие на них.
По строению различают два типа митохондрий: с пластинчатыми и тубуло-везикулярными кристами. С пластинчатыми кристами митохондрии представлены в тканях, где требуется больше синтеза энергии. С тубуло-везикулярными кристами представлены в клетках надпочечников, синтезирующих стероидные гормоны.
СИНТЕЗ ЭНЕРГИИ
Аденозинтрифосфат (АТФ) это источник энергии практически для всех клеточных функций. Аденозинтрифосфат образуется при окислении угеводов, жиров и белков. Он является конечной целью их окисления для митохондрии.
Являясь единой «энергетической валютой» АТФ обеспечивает энергией:
Синтез компоненов клетки;
Синтез всех веществ в органимзе;
Мышечное сокращение;