Сухотина Мария Павловна - Душа машины. Радикальный поворот к человекоподобию систем искусственного интеллекта стр 6.

Шрифт
Фон

Невозможно объяснить, как алгоритмы, работающие с огромным количеством параметров и множеством хитросплетенных уровней абстрагирования, делают те или иные выводы. А ведь они иногда могут обернуться катастрофой  приводить к расовой дискриминации в сфере кредитования и судебных решений по уголовным делам, к чудовищным ДТП или к тому, что онлайн-реклама уважаемых брендов появится рядом с неонацистским или конспирологическим контентом.

Стремление сделать искусственный интеллект объяснимым, законодательно закрепленное в Общем регламенте Европейского союза о защите данных, вызывает вопрос: объяснимым для кого? Трактовки ищут разные заинтересованные стороны. А трудности возникают даже при использовании относительно простой системы оценки кредитного риска[15].

Разработчики программного обеспечения и системные администраторы хотят получить разъяснение с точки зрения архитектуры и параметров обработки данных. Опытному кредитному специалисту, принимающему окончательное решение, возможно, понадобится информация о том, как система учитывала разные факторы, выдавая рекомендацию. Заявитель хочет понять, почему ему отказали: из-за возраста, расы, места проживания, плохой кредитной истории?

Регулятору важно быть уверенным, что система не нарушает конфиденциальности данных и антидискриминационных законов и что она неуязвима для финансовых мошенников. Неспециалист, размышляющий о проблеме черного ящика в целом, может захотеть узнать, зачем кому-то создавать машину, действий которой он не понимает.


Системы глубокого обучения не умеют читать

Мы можем собрать все книги мира в огромную базу данных с возможностью поиска (как в Google Books) и разработать программы машинного чтения, чтобы обнаружить все присутствующие виды взаимосвязей. Но ни одна из существующих систем искусственного интеллекта не может читать и понимать прочитанное даже на уровне маленького ребенка.

Исследователи Гэри Маркус и Эрнест Дэвис задали сервису Google Talk to Books простой вопрос: «Где Гарри Поттер встретил Гермиону Грейнджер?» Ни один из двадцати предложенных ответов не относился к книге «Гарри Поттер и философский камень» и ни в одном не содержалось информации, где же произошла встреча[16].

Смартфоны могут относительно хорошо исправлять опечатки или предлагать следующее слово в предложении. Программы-переводчики выдают вполне сносные переводы со многих языков. Но ни одно из этих приложений  как и никакие другие  не дает базовых знаний, чувства контекста и бесчисленных предположений о реальности, необходимых для понимания прочитанного.


Им не хватает базовых знаний

А именно: понимания пространства, времени и причинно-следственных связей  того, чему люди, подобно младенцу, достающему карандаш, научаются без видимых усилий[17].

Возьмем причинно-следственные связи  важнейший компонент рационального мышления. Во многом успех глубокого обучения был обусловлен мощной способностью находить корреляции, например между совокупностью симптомов и конкретным заболеванием. Но корреляция  это не причинно-следственная связь. Если бы машины понимали, что одно является следствием другого, их не нужно было бы переучивать под каждую новую задачу[18]. Вместо этого они могли бы применять свои знания из одной области к другим областям.

Будущее радикально человеческого интеллекта

Несмотря на достижения когнитивной психологии и нейронаук, мы так и не знаем, каким образом человеческий мозг с его очень ограниченными вычислительными ресурсами творит удивительные вещи. Нам в целом известно, что представляют собой некоторые из основных структурных блоков человеческого разума, и первопроходцы начинают создавать их машинные аналоги.

Авторы работы «Создание машин, которые учатся и думают как люди», основополагающей в этом новом направлении в развитии машинного интеллекта, считают: «До тех пор, пока естественный интеллект остается непревзойденным, реверсивный инжиниринг[19] человеческих решений для сложных вычислительных проблем будет продолжать информировать и развивать искусственный интеллект»[20].

Вопрос уровня топ-менеджеров: какие из описанных ниже когнитивных способностей, более похожих на человеческие, актуальны для создания ценности и предоставления ее клиентам в их бизнесе?

Обобщение в условиях реального мира

Пока теоретики яростно спорят о глубоком обучении и некой идеальной версии искусственного интеллекта, способной сделать его похожим на человеческий, практики действуют. Они используют все дисциплины ИИ как средство поиска новых перспектив, расширяющих возможности и увеличивающих производительность машин.

Рассмотрим в качестве примера грядущее поколение логистических и складских роботов, созданных по технологии, которая может оказать огромное влияние на деятельность и прибыль компаний во многих отраслях. В автоматизированных центрах обработки и выполнения заказов с многокилометровыми складскими стеллажами роботы выполняют большую часть тяжелой работы и начальные этапы комплектации.

Но автоматизированные системы сталкиваются с сотнями тысяч артикулов, которые часто меняются. А значит, либо эти системы должны быть разработаны для подбора определенной категории товаров, либо их придется обучать подбору каждого товара. Но тогда при добавлении новых товаров их необходимо будет вносить в систему вручную, что крайне нерационально.

Именно поэтому складские работники во многих отношениях превосходят нынешнее поколение роботов-сборщиков. Людей не нужно переучивать под каждый новый товар. Они могут обобщать свой опыт, легко отличать один объект от другого и быстро определять, как лучше обращаться с предметом, чтобы его не повредить. Но центры обработки заказов, нацеленные на доставку в тот же день или даже в течение часа, страдают от текучки кадров и ограничений в объеме и скорости работы, связанных с человеческими возможностями.

Немецкая компания Obeta, занимающаяся оптовыми продажами электроники, совместно с австрийской логистической компанией KNAPP AG запустила на своих складах новое поколение роботов-сборщиков, способных менять правила игры. От предыдущих поколений их отличает искусственный интеллект от Covariant  стартапа, основанного робототехниками из Калифорнийского университета в Беркли и исследовательской лаборатории Open AI.

Благодаря ИИ от Covariant роботы обучаются 3D-восприятию, пониманию физических возможностей объектов, планированию движения в реальном времени, а также методу «на раз-два-три»: освоению задачи в результате выполнения нескольких тренировочных примеров. Наличие общих способностей позволяет роботам быстро научиться манипулировать объектами без команд извне[21]. Задача роботов заключается в том, чтобы выбрать товары на оптовом складе и добавить их в индивидуальные заказы для отправки.

Один из посетителей штаб-квартиры Covariant описал технологию в действии: «Я наблюдал, как три разных робота мастерски собирают заказ из всевозможных товаров. За считаные секунды алгоритм анализирует положение предметов, рассчитывает угол атаки и последовательность движений, а затем вытягивает руку, чтобы захватить товар с помощью присоски. Он движется уверенно и точно, меняя скорость в зависимости от хрупкости покупки»[22].

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub fb3