Захватова Ольга С. - Атлас искусственного интеллекта: руководство для будущего стр 10.

Шрифт
Фон

Миф о чистых технологиях

Минералы это основа искусственного интеллекта, но его жизненной силой по-прежнему является электрическая энергия. Передовые вычисления редко рассматриваются с точки зрения углеродного следа, ископаемого топлива и загрязнения окружающей среды; метафоры вроде «облака» подразумевают нечто плавающее и хрупкое в рамках естественной, зеленой индустрии[88]. Серверы спрятаны в неприметных центрах обработки данных, и их загрязняющие свойства гораздо менее заметны, чем дымящиеся трубы угольных электростанций. Технологический сектор активно рекламирует свою экологическую политику, инициативы по устойчивому развитию и планы по решению проблем, связанных с климатом, используя ИИ в качестве инструмента решения проблем. Все это является частью создаваемого общественностью имиджа устойчивой технологической индустрии без выбросов углекислого газа. В действительности же для работы вычислительных инфраструктур Amazon Web Services или Microsoft Azure требуется гигантское количество энергии, а углеродный след систем ИИ, работающих на этих платформах, постоянно растет[89].

Как пишет Тунг Хуи Ху в книге «Предыстория облака»: «Облако это ресурсоемкая, добывающая технология, которая преобразует воду и электричество в вычислительную мощность, нанося значительный ущерб окружающей среде, которую затем вытесняет из поля зрения»[90]. Решение проблемы энергоемкой инфраструктуры стало одной из главных задач. Конечно, отрасль приложила значительные усилия, чтобы сделать центры обработки данных более энергоэффективными и увеличить использование возобновляемых источников энергии. Но уже сейчас углеродный след мировой вычислительной инфраструктуры сравнялся с углеродным следом авиационной промышленности в период ее расцвета, и он растет даже быстрее[91]. Оценки разнятся: такие исследователи, как Лотфи Белхир и Ахмед Эльмелиги, считают, что к 2040 году на долю технологического сектора придется 14 процентов глобальных выбросов парниковых газов, а группа исследователей из Швеции прогнозирует, что потребление электроэнергии одними только центрами обработки данных к 2030 году возрастет примерно в 15 раз[92].

Внимательно изучив вычислительные мощности, необходимые для создания моделей ИИ, мы видим, что стремление к экспоненциальному увеличению скорости и точности обходится планете дорогой ценой. Требования к обработке данных при обучении моделей ИИ и, следовательно, их энергопотребление все еще являются новой областью исследований. Одна из первых работ в этой области была опубликована исследователем ИИ Эммой Струбелл и ее командой из Массачусетского университета в Амхерсте в 2019 году. Сфокусировавшись на попытке понять углеродный след моделей обработки естественного языка (NLP), они начали набрасывать потенциальные оценки путем запуска моделей ИИ в течение сотен тысяч вычислительных часов[93]. Первые цифры оказались поразительными. Команда Струбелл обнаружила, что запуск всего одной модели NLP приводит к выбросу более 660000 фунтов углекислого газа, что эквивалентно пяти автомобилям, работающим на газе, за весь срок их службы (включая производство), или 125 перелетам в обе стороны из Нью-Йорка в Пекин[94].

Хуже того, исследователи отметили, что такое моделирование является, как минимум, базовой оптимистичной оценкой. Она не отражает реальных коммерческих масштабов, в которых работают такие компании, как Apple и Amazon, собирающие данные в Интернете и использующие свои собственные модели NLP для того, чтобы системы ИИ, такие как Siri и Alexa, звучали более человечно. Однако точный объем энергопотребления, производимого моделями ИИ в технологическом секторе, неизвестен; эта информация хранится как строго охраняемая корпоративная тайна. И здесь экономика данных основана на сохранении экологического невежества.

В области ИИ стандартной практикой является максимизация вычислительных циклов для повышения производительности, в соответствии с убеждением, что больше значит лучше. Как говорит Рич Саттон из DeepMind: «Методы, использующие вычисления, в конечном итоге являются наиболее эффективными, причем с большим отрывом»[95]. Вычислительная техника перебора при обучении ИИ или систематический сбор большего количества данных и использование большего количества вычислительных циклов до достижения лучшего результата, привела к резкому увеличению потребления энергии. По оценкам OpenAI, с 2012 года объем вычислений, используемых для обучения одной модели ИИ, ежегодно увеличивался в десять раз. Это связано с тем, что разработчики «постоянно находят способы использовать больше чипов параллельно и готовы платить за это экономические издержки»[96]. Мышление с точки зрения экономических издержек сужает взгляд на более широкую локальную и экологическую цену сжигания вычислительных циклов как способа создания дополнительной эффективности. Тенденция к «вычислительному максимализму» имеет глубокие экологические последствия.

Центры обработки данных являются одними из крупнейших в мире потребителей электроэнергии[97]. Для питания этой многоуровневой машины требуется электроэнергия из сети в виде угля, газа, ядерной или возобновляемой энергии. Некоторые корпорации реагируют на растущую тревогу по поводу энергопотребления крупномасштабных вычислений: Apple и Google заявляют о своей углеродной нейтральности (это означает, что они компенсируют выбросы углерода путем покупки кредитов), а Microsoft обещает стать углеродно-нейтральной к 2030 году. Однако работники этих компаний настаивают на сокращении выбросов по всем направлениям, а не на поблажках из чувства вины перед окружающей средой[98]. Более того, Microsoft, Google и Amazon лицензируют свои платформы искусственного интеллекта, инженерные кадры и инфраструктуру компаниям, добывающим ископаемое топливо, чтобы помочь им найти и добыть топливо из недр земли, что еще больше стимулирует отрасль, наиболее ответственную за антропогенное изменение климата.

За пределами Соединенных Штатов поднимаются еще большие облака углекислого газа. Китайская индустрия центров обработки данных получает 73 процента электроэнергии из угля, выбросив в 2018 году около 99 миллионов тонн CO2[99]. Ожидается, что к 2023 году потребление электроэнергии инфраструктурой китайских центров обработки данных увеличится на две трети[100]. Гринпис поднял тревогу по поводу колоссальных энергетических потребностей крупнейших технологических компаний Китая, утверждая, что «ведущие технологические компании, включая Alibaba, Tencent и GDS, должны резко увеличить объемы закупок чистой энергии и раскрыть данные об энергопотреблении»[101]. Долгосрочное воздействие угольной энергетики проявляется повсюду, превышая любые национальные границы. Планетарный характер добычи ресурсов и ее последствий выходит далеко за рамки интересов национального государства.

Вода рассказывает еще одну историю об истинной стоимости вычислений. История использования воды в США полна сражений и секретных сделок, и, как и в случае с вычислениями, сделки, заключенные в отношении воды, держатся в секрете. Один из крупнейших в США центров обработки данных принадлежит Агентству национальной безопасности (АНБ) в Блаффдейле, штат Юта. Открытый с конца 2013 года, Центр обработки данных разведывательного сообщества в рамках комплексной национальной инициативы по кибербезопасности невозможно посетить. Но, проехав через окрестные пригороды, я нашла проселок на холме, поросшем шалфеем, и оттуда смогла поближе рассмотреть разросшийся объект площадью 1,2 миллиона квадратных футов. Этот объект имеет своего рода символическую силу следующей эры правительственного сбора данных, поскольку он был показан в таких фильмах, как «Citizenfour: правда Сноудена», и изображен в тысячах новостных сюжетов об АНБ. Однако вживую он выглядит неприметно и прозаично гигантский контейнер для хранения данных, совмещенный с блоком правительственных офисов.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3